留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轮动叶吸力面气膜冷却径向差异对比

王磊 李海旺 谢刚 周志宇

王磊, 李海旺, 谢刚, 等. 涡轮动叶吸力面气膜冷却径向差异对比[J]. 航空动力学报, 2024, 39(4):20220349 doi: 10.13224/j.cnki.jasp.20220349
引用本文: 王磊, 李海旺, 谢刚, 等. 涡轮动叶吸力面气膜冷却径向差异对比[J]. 航空动力学报, 2024, 39(4):20220349 doi: 10.13224/j.cnki.jasp.20220349
WANG Lei, LI Haiwang, XIE Gang, et al. Comparison for radial difference of film cooling performance on suction surface of a rotor blade[J]. Journal of Aerospace Power, 2024, 39(4):20220349 doi: 10.13224/j.cnki.jasp.20220349
Citation: WANG Lei, LI Haiwang, XIE Gang, et al. Comparison for radial difference of film cooling performance on suction surface of a rotor blade[J]. Journal of Aerospace Power, 2024, 39(4):20220349 doi: 10.13224/j.cnki.jasp.20220349

涡轮动叶吸力面气膜冷却径向差异对比

doi: 10.13224/j.cnki.jasp.20220349
基金项目: 国家自然科学基金(51906008,51822602); 中央高校基本科研业务费(YWF-19BJ-J-293); 国家科技重大专项(2017-Ⅲ-0003-0027)
详细信息
    作者简介:

    王磊(1988-),男,博士生,主要从事涡轮叶片气膜冷却研究

    通讯作者:

    周志宇(1993-),男,博士,主要从事涡轮叶片气膜冷却研究。E-mail:zzy19930929@buaa.edu.cn

  • 中图分类号: V231.3

Comparison for radial difference of film cooling performance on suction surface of a rotor blade

  • 摘要:

    数值仿真研究了不同吹风比和旋转雷诺数条件下涡轮叶片吸力面不同叶高位置处气膜冷却效率分布的差异。研究涉及5个直径为0.8 mm的圆柱孔,气膜孔处于涡轮叶片吸力面17.8%流向位置处,并分别处于10%、30%、50%、70%和90%叶高位置处。研究在400、600 r/min和800 r/min转速下进行,分别对应旋转雷诺数357 000、536 000和715 000。研究涉及5个吹风比:0.50、0.75、1.00、1.25和1.50。研究结果表明:靠近叶根处的气膜受叶根通道涡影响明显向叶顶方向偏转。不同叶高位置处的气膜冷却效率分布存在明显差异。旋转给冷却射流带来附加离心力和哥氏力的作用,使得吹风比和旋转雷诺数的增加对不同叶高位置的气膜尾迹偏转产生不同影响。旋转雷诺数对不同叶高位置的气膜冷却影响存在差异。

     

  • 图 1  数值仿真流体域模型

    Figure 1.  Fluid domain model of the numerical simulation

    图 2  动叶模型示意图

    Figure 2.  Schematic of the rotor blade

    图 3  转速为600 r/min下吸力面主流静压和速度沿流向分布

    Figure 3.  Streamwise distributions of the mainstream static pressure and velocity on the blade suction surface at 600 r/min

    图 4  转速为600 r/min下叶栅通道内主流二次流的发展情况

    Figure 4.  Development of the secondary flow of the mainstream in the cascade at 600 r/min

    图 5  转速为600 r/min下不同吹风比条件下绝热气膜冷却效率分布云图

    Figure 5.  Contours of film cooling effectiveness distributions at different blowing ratios at 600 r/min

    图 6  转速为600 r/min下面平均气膜冷却效率

    Figure 6.  Spatial average film cooling effectiveness at 600 r/min

    图 7  转速为600 r/min下展向平均气膜冷却效率分布

    Figure 7.  Spanwise average film cooling effectiveness distributions at 600 r/min

    图 8  M=0.75,1.50时不同旋转雷诺数条件下绝热气膜冷却效率分布云图

    Figure 8.  Contours of film cooling effectiveness distributions at different rotational Reynolds number at M=0.75 , 1.50

    图 9  M=0.75,1.50时不同旋转雷诺数条件下面平均气膜冷却效率

    Figure 9.  Spatial average film cooling effectiveness at different rotational Reynolds number at M=0.75, 1.50

    图 10  不同旋转雷诺数条件下叶栅通道内气膜孔下游二次流的分布(M=0.75)

    Figure 10.  Distributions of the secondary flow in the cascade at different rotational Reynolds number (M=0.75)

    表  1  主流和冷却射流工况设置

    Table  1.   Working condition setting of mainstream and coolant

    转速/(r/min)y/H)/%主流流速/(m/s)冷气质量流量/10−3 (g/s)
    M=0.50M=0.75M=1.00M=1.25M=1.50
    400107.301.4002.1012.8013.5014.201
    308.681.6642.4963.3294.1614.993
    507.841.5042.2563.0093.7614.513
    706.881.3191.9782.6373.2973.956
    905.791.1101.6652.2192.7743.329
    6001013.002.4943.7404.9876.2347.481
    3014.022.6884.0325.3766.7208.064
    5012.552.4063.6094.8126.0147.217
    7010.822.0753.1134.1515.1886.226
    909.001.7272.5903.4544.3175.180
    8001018.633.5735.3607.1468.93310.719
    3019.453.7295.5947.4589.32311.188
    5017.313.3194.9796.6398.2989.958
    7014.822.8414.2625.6837.1048.524
    9012.202.3403.5104.6805.8507.020
    下载: 导出CSV
  • [1] GOLDSTEIN R J,ECKERT E R G,RAMSEY J W. Film cooling with injection through holes: adiabatic wall temperatures downstream of a circular hole[J]. Journal of Engineering for Power,1968,90(4): 384-393. doi: 10.1115/1.3609223
    [2] BERNSDORF S,ROSE M G,ABHARI R S. Modeling of film cooling: Part Ⅰ experimental study of flow structure[J]. Journal of Turbomachinery,2006,128(1): 141-149. doi: 10.1115/1.2098768
    [3] BURDET A,ABHARI R S,ROSE M G. Modeling of film cooling: Part Ⅱ model for use in three-dimensional computational fluid dynamicscs[J]. Journal of Turbomachinery,2007,129(2): 221-231. doi: 10.1115/1.2437219
    [4] YU Feiyan, YAVUZKURT S. Simulations of film cooling flow structure and heat transfer in the near field of cooling jets with a modified DES model[R]. ASME Paper GT2019-3683, 2019.
    [5] ZAMIRI A,CHUNG J T. Large eddy simulation of compound angle effects on cooling effectiveness and flow structure of fan-shaped holes[J]. International Journal of Heat and Mass Transfer,2021,178: 121599.1-121599.18.
    [6] ZHOU Zhiyu,LI Haiwang,XIE Gang,et al. The cooling performance of three-row compound angle holes on the suction surface of a rotating turbine blade[J]. Propulsion and Power Research,2021,10(1): 23-36. doi: 10.1016/j.jppr.2020.09.001
    [7] HAVEN B A,KUROSAKA M. Kidney and anti-kidney vortices in crossflow jets[J]. Journal of Fluid Mechanics,1997,352: 27-64. doi: 10.1017/S0022112097007271
    [8] JONES F B, FOX D W, OLIVER T, et al. Parametric optimization of film cooling hole geometry[R]. ASME Paper GT2021-59326, 2021.
    [9] SCHWARZ S G,GOLDSTEIN R J. The two-dimensional behavior of film cooling jets on concave surfaces[J]. Journal of Turbomachinery,1989,111(2): 124-130. doi: 10.1115/1.3262246
    [10] SCHWARZ S G,GOLDSTEIN R J,ECKERT E R G. The influence of curvature on film cooling performance[J]. Journal of Turbomachinery,1991,113(3): 472-478. doi: 10.1115/1.2927898
    [11] GAO Zhihong,NARZARY D P,HAN J C. Film cooling on a gas turbine blade pressure side or suction side with axial shaped holes[J]. International Journal of Heat and Mass Transfer,2008,51(9/10): 2139-2152.
    [12] ZHOU Zhiyu,LI Haiwang,WANG Haichao,et al. Film cooling of cylindrical holes on turbine blade suction side near leading edge[J]. International Journal of Heat and Mass Transfer,2019,141: 669-679. doi: 10.1016/j.ijheatmasstransfer.2019.07.028
    [13] ZENG Lingyu,CHEN Pingting,LI Xueying,et al. Influence of simplifications of blade in gas turbine on film cooling performance[J]. Applied Thermal Engineering,2018,128: 877-886. doi: 10.1016/j.applthermaleng.2017.09.008
    [14] DRING R P,BLAIR M F,JOSLYN H D. An experimental investigation of film cooling on a turbine rotor blade[J]. Journal of Engineering for Power,1980,102(1): 81-87. doi: 10.1115/1.3230238
    [15] TAO Zhi,YANG Xiaojun,DING Shuiting,et al. Experimental study of rotation effect on film cooling over the flat wall with a single hole[J]. Experimental Thermal and Fluid Science,2008,32(5): 1081-1089. doi: 10.1016/j.expthermflusci.2007.12.003
    [16] TAO Zhi,ZHAO Zhenming,DING Shuiting,et al. Suitability of three different two-equation turbulence models in predicting film cooling performance over a rotating blade[J]. International Journal of Heat and Mass Transfer,2009,52(5/6): 1268-1275.
    [17] TAO Zhi,LI Guoqing,DENG Hongwu,et al. Film cooling performance in a low-speed 1.5-stage turbine: effects of blowing ratio and rotation[J]. Journal of Enhanced Heat Transfer,2011,18(5): 419-432. doi: 10.1615/JEnhHeatTransf.2011003253
    [18] 周志宇. 旋转状态下高压涡轮动叶吸力面气膜孔排布优化研究[D]. 北京: 北京航空航天大学, 2021.

    ZHOU Zhiyu. Optimization study of film hole arrangement on the suction surface of a rotating turbine blade[D]. Beijing: Beihang University, 2021. (in Chinese)
    [19] XIE Gang,TAO Zhi,ZHOU Zhiyu,et al. Effect of leading edge diameter ratio and mainstream Reynolds number on film cooling performance of rotating blade leading edge[J]. Applied Thermal Engineering,2021,186: 116047.1-116047.16.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  88
  • HTML浏览量:  40
  • PDF量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 网络出版日期:  2023-10-12

目录

    /

    返回文章
    返回