留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速飞行器减阻杆/盘与双喷流组合构型减阻和防热性能

许阳 陈宣亮

许阳, 陈宣亮. 超声速飞行器减阻杆/盘与双喷流组合构型减阻和防热性能[J]. 航空动力学报, 2024, 39(5):20220351 doi: 10.13224/j.cnki.jasp.20220351
引用本文: 许阳, 陈宣亮. 超声速飞行器减阻杆/盘与双喷流组合构型减阻和防热性能[J]. 航空动力学报, 2024, 39(5):20220351 doi: 10.13224/j.cnki.jasp.20220351
XU Yang, CHEN Xuanliang. Drag and heat flux reduction performance of supersonic vehicle with combination model of aerospike/aerodisk and double jet[J]. Journal of Aerospace Power, 2024, 39(5):20220351 doi: 10.13224/j.cnki.jasp.20220351
Citation: XU Yang, CHEN Xuanliang. Drag and heat flux reduction performance of supersonic vehicle with combination model of aerospike/aerodisk and double jet[J]. Journal of Aerospace Power, 2024, 39(5):20220351 doi: 10.13224/j.cnki.jasp.20220351

超声速飞行器减阻杆/盘与双喷流组合构型减阻和防热性能

doi: 10.13224/j.cnki.jasp.20220351
基金项目: 173基础加强计划技术领域基金(2021-JCJQ-JJ-0345)
详细信息
    作者简介:

    许阳(1996-),男,工程师,硕士,主要从事高超声速飞行器减阻防热性能研究、飞发性能一体化技术研究

  • 中图分类号: V423.6

Drag and heat flux reduction performance of supersonic vehicle with combination model of aerospike/aerodisk and double jet

  • 摘要:

    为降低超声速飞行器的气动力和热载荷,研究一种减阻杆/盘与双喷流组合构型,并采用数值方法分析了几何参数和喷流参数对流场特征以及减阻和防热性能的影响。结果表明:减阻杆长径比对构型的减阻效率影响较小,但对防热效率影响较大;增加减阻盘直径比,构型的减阻效率先增大后减小,防热效率先减小后增大,但当逆向喷流总压较高时,减阻盘直径比对减阻和防热效率的影响均较小;提高逆向喷流总压比,构型的减阻和防热效率一直处于较高水平,且其变化幅度均不明显;提高侧向喷流总压比,构型的减阻和防热效率均增大,减阻效率变化率增大,防热效率变化率减小;侧向喷流出口位置远离钝体头部,减阻效率增大,防热效率减小;适当选取减阻杆/盘与双喷流参数,可达到57.1%的减阻效率,同时防热效率达到100.4%。

     

  • 图 1  模型示意图及边界条件

    Figure 1.  Schematic diagram of model and boundary conditions

    图 2  总体和局部放大的网格

    Figure 2.  Global and local magnified grids

    图 3  不同网格尺寸下沿钝体壁面压力系数分布

    Figure 3.  Pressure coefficient distribution along blunt body with different grids

    图 4  不同网格尺寸下沿钝体壁面斯坦顿数分布

    Figure 4.  Stanton number distribution along blunt body with different grids

    图 5  减阻盘的密度云图和试验纹影图

    Figure 5.  Density contour and experimental schlieren of aerodisk

    图 6  沿钝体壁面压力分布

    Figure 6.  Pressure distribution along the blunt body

    图 7  沿钝体壁面热流分布

    Figure 7.  Heat flux distribution along the blunt body

    图 8  逆向喷流的密度云图和试验纹影图

    Figure 8.  Density contour and experimental schlieren of opposing jet

    图 9  沿钝体壁面斯坦顿数分布的数值与试验结果对比

    Figure 9.  Comparison of Stanton number distribution along the blunt body between experiment and simulation

    图 10  侧向喷流的密度云图和试验纹影图

    Figure 10.  Density contour and experimental schlieren of lateral jet

    图 11  沿钝体壁面压力系数分布的数值与试验结果对比

    Figure 11.  Comparison of pressure coefficient distribution along the blunt body between experiment and simulation

    图 12  基准构型和组合构型的马赫数云图及局部放大流线图

    Figure 12.  Mach number contours and locally magnified streamlines for the basic model and combination model

    图 13  不同减阻杆长径比构型的马赫数云图和流线以及温度云图和等值线

    Figure 13.  Mach number contours and streamlines as well as temperature contours and isolines for different L/D

    图 14  不同减阻杆长径比构型沿钝体壁面压力系数分布

    Figure 14.  Pressure coefficient distribution along the blunt body for different L/D

    图 15  不同减阻杆长径比构型的总阻力及其分量

    Figure 15.  Total drag and its components for different L/D

    图 16  不同减阻杆长径比构型沿钝体壁面斯坦顿数分布

    Figure 16.  Stanton number distribution along the blunt body for different L/D

    图 17  不同减阻杆长径比构型的防热效率

    Figure 17.  Heat flux reduction efficiency for different L/D

    图 18  不同减阻盘直径比构型的马赫数云图和流线以及温度云图和等值线

    Figure 18.  Mach number contours and streamlines as well as temperature contours and isolines for different d/D

    图 19  不同减阻盘直径比构型沿钝体壁面压力系数分布

    Figure 19.  Pressure coefficient distribution along the blunt body for different d/D

    图 20  不同减阻盘直径比构型的总阻力及其分量

    Figure 20.  Total drag and its components for different d/D

    图 21  不同减阻盘直径比构型沿钝体壁面斯坦顿数分布

    Figure 21.  Stanton number distribution along the blunt body for different d/D

    图 22  不同减阻盘直径比构型的防热效率

    Figure 22.  Heat flux reduction efficiency for different d/D

    图 23  马赫数云图和流线以及温度云图和等值线(πo=0.4,πo=0.8)

    Figure 23.  Mach number contours and streamlines as well as temperature contours and isolines (πo=0.4,πo=0.8)

    图 24  不同逆向喷流总压比构型沿钝体壁面压力系数分布

    Figure 24.  Pressure coefficient distribution along the blunt body for different total pressure ratios of the opposing jet

    图 25  不同逆向喷流总压比构型的总阻力及其分量

    Figure 25.  Total drag and its components for different total pressure ratios of the opposing jet

    图 26  不同逆向喷流总压比构型沿钝体壁面斯坦顿数分布

    Figure 26.  Stanton number distribution along the blunt body for different total pressure ratios of the opposing jet

    图 27  不同逆向喷流总压比构型的防热效率

    Figure 27.  Heat flux reduction efficiency for different total pressure ratios of the opposing jet

    图 28  马赫数云图和流线以及温度云图和等值线(πl=0.1,πl=0.6)

    Figure 28.  Mach number contours and streamlines as well as temperature contours and isolines (πl=0.1,πl=0.6)

    图 29  不同侧向喷流总压比构型沿钝体壁面压力系数分布

    Figure 29.  Pressure coefficient distribution along the blunt body for different total pressure ratios of the lateral jet

    图 30  不同侧向喷流总压比构型总阻力及其分量

    Figure 30.  Total drag and its components for different total pressure ratios of the lateral jet

    图 31  不同侧向喷流总压比构型沿钝体壁面斯坦顿数分布

    Figure 31.  Stanton number distribution along the blunt body for different total pressure ratios of the lateral jet

    图 32  不同侧向喷流总压比构型的防热效率

    Figure 32.  Heat flux reduction efficiency for different total pressure ratios of the lateral jet

    图 33  不同侧向喷流位置构型的马赫数云图和流线

    Figure 33.  Mach number contours and streamlines for different locations of the lateral jet

    图 34  不同侧向喷流位置构型的温度云图和等值线

    Figure 34.  Temperature contours and isolines for different locations of the lateral jet

    图 35  不同侧向喷流位置构型沿钝体壁面的压力系数

    Figure 35.  Pressure coefficient distribution along the blunt body for different locations of the lateral jet

    图 36  不同侧向喷流位置构型的总阻力及其分量

    Figure 36.  Total drag and its components for different locations of the lateral jet

    图 37  不同侧向喷流位置构型沿钝体壁面斯坦顿数分布

    Figure 37.  Stanton number distribution along the blunt body for different locations of the lateral jet

    图 38  不同侧向喷流位置构型的防热效率

    Figure 38.  Heat flux reduction efficiency for different locations of the lateral jet

    表  1  边界条件

    Table  1.   Boundary conditions

    参数数值
    自由来流总压/MPa1.37
    总温/K397
    马赫数3.98
    侧向喷流马赫数1.00
    总温/K300
    下载: 导出CSV

    表  2  三种网格划分细节

    Table  2.   Details of the three sets of grids

    网格尺寸第一层边界层高度/10−6 m网格总数y+
    粗网格5.02995910.91
    中等网格1.03334540.18
    细网格0.53805440.07
    下载: 导出CSV
  • [1] 岳连捷,张旭,张启帆,等. 高马赫数超燃冲压发动机技术研究进展[J]. 力学学报,2022,54(2): 263-288.

    YUE Lianjie,ZHANG Xu,ZHANG Qifan,et al. Research progress on high-Mach-number scramjet engine technologies[J]. Chinese Journal of Theoretical and Applied Mechanics,2022,54(2): 263-288. (in Chinese)
    [2] 徐世南,吴催生. 高超声速飞行器热防护结构研究进展[J]. 飞航导弹,2019(4): 48-55. doi: 10.16338/j.issn.1009-1319.20180344

    XU Shinan,WU Cuisheng. Research progress on thermal protection structure of hypersonic vehicle[J]. Aerodynamic Missile Journal,2019(4): 48-55. (in Chinese) doi: 10.16338/j.issn.1009-1319.20180344
    [3] SUN Xiwan,HUANG Wei,OU Min,et al. A survey on numerical simulations of drag and heat reduction mechanism in supersonic/hypersonic flows[J]. Chinese Journal of Aeronautics,2019,32(4): 771-784. doi: 10.1016/j.cja.2018.12.024
    [4] HUANG Wei,CHEN Zheng,YAN Li,et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: a review[J]. Progress in Aerospace Sciences,2019,105: 31-39. doi: 10.1016/j.paerosci.2018.12.001
    [5] WANG Zhenguo,SUN Xiwan,HUANG Wei,et al. Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: a survey[J]. Acta Astronautica,2016,129: 95-110. doi: 10.1016/j.actaastro.2016.09.004
    [6] LU Haibo,LIU Weiqiang. Investigation of thermal protection system by forward-facing cavity and opposing jet combinatorial configuration[J]. Chinese Journal of Aeronautics,2013,26(2): 287-293. doi: 10.1016/j.cja.2013.02.005
    [7] HUANG Wei,YAN Li,LIU Jun,et al. Drag and heat reduction mechanism in the combinational opposing jet and acoustic cavity concept for hypersonic vehicles[J]. Aerospace Science and Technology,2015,42: 407-414. doi: 10.1016/j.ast.2015.01.029
    [8] HUANG Wei,JIANG Yanping,YAN Li,et al. Heat flux reduction mechanism induced by a combinational opposing jet and cavity concept in supersonic flows[J]. Acta Astronautica,2016,121: 164-171. doi: 10.1016/j.actaastro.2016.01.008
    [9] SUN Xiwan,GUO Zhenyun,HUANG Wei,et al. Drag and heat reduction mechanism induced by a combinational novel cavity and counterflowing jet concept in hypersonic flows[J]. Acta Astronautica,2016,126: 109-119. doi: 10.1016/j.actaastro.2016.04.022
    [10] SUN Xiwan,GUO Zhenyun,HUANG Wei,et al. A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows[J]. Acta Astronautica,2017,131: 204-225. doi: 10.1016/j.actaastro.2016.11.044
    [11] JIANG Zonglin,LIU Yunfeng,HAN Guilai,et al. Experimental demonstration of a new concept of drag reduction and thermal protection for hypersonic vehicles[J]. Acta Mechanica Sinica,2009,25(3): 417-419. doi: 10.1007/s10409-009-0252-8
    [12] LIU Yunfeng,JIANG Zonglin. Concept of non-ablative thermal protection system for hypersonic vehicles[J]. AIAA Journal,2013,51(3): 584-590. doi: 10.2514/1.J051875
    [13] BARZEGAR G M,IMANI M,GANJI D D. Heat reduction using conterflowing jet for a nose cone with aerodisk in hypersonic flow[J]. Aerospace Science and Technology,2014,39: 652-665. doi: 10.1016/j.ast.2014.07.005
    [14] HUANG Jie,YAO Weixing. Multi-objective design optimization of hypersonic spiked blunt body with opposing jet[J]. Journal of Spacecraft and Rockets,2019,56(5): 1553-1563. doi: 10.2514/1.A34459
    [15] HUANG Wei,LIU Jun,XIA Zhixun. Drag reduction mechanism induced by a combinational opposing jet and spike concept in supersonic flows[J]. Acta Astronautica,2015,115: 24-31. doi: 10.1016/j.actaastro.2015.04.025
    [16] EGHLIMA Z,MANSOUR K,FARDIPOUR K. Heat transfer reduction using combination of spike and counterflow jet on blunt body at high Mach number flow[J]. Acta Astronautica,2018,143: 92-104. doi: 10.1016/j.actaastro.2017.11.012
    [17] QU Feng,SUN Di,BAI Junqiang,et al. Numerical investigation of blunt body’s heating load reduction with combination of spike and opposing jet[J]. International Journal of Heat and Mass Transfer,2018,127: 7-15. doi: 10.1016/j.ijheatmasstransfer.2018.06.154
    [18] MORADI R,MOSAVAT M,BARZEGAR GERDROODBARY M,et al. The influence of coolant jet direction on heat reduction on the nose cone with Aerodome at supersonic flow[J]. Acta Astronautica,2018,151: 487-493. doi: 10.1016/j.actaastro.2018.06.026
    [19] OU Min,YAN Li,HUANG Wei,et al. Detailed parametric investigations on drag and heat flux reduction induced by a combinational spike and opposing jet concept in hypersonic flows[J]. International Journal of Heat and Mass Transfer,2018,126: 10-31. doi: 10.1016/j.ijheatmasstransfer.2018.05.013
    [20] OU Min,YAN Li,HUANG Wei,et al. Design exploration of combinational spike and opposing jet concept in hypersonic flows based on CFD calculation and surrogate model[J]. Acta Astronautica,2019,155: 287-301. doi: 10.1016/j.actaastro.2018.12.012
    [21] HUANG Jie,YAO Weixing. A novel non-ablative thermal protection system with combined spike and opposing jet concept[J]. Acta Astronautica,2019,159: 41-48. doi: 10.1016/j.actaastro.2019.02.005
    [22] MENG Yushan,YAN Li,HUANG Wei,et al. Fluid-thermal coupled investigation on the combinational spike and opposing/lateral jet in hypersonic flows[J]. Acta Astronautica,2021,185: 264-282. doi: 10.1016/j.actaastro.2021.05.022
    [23] ZHU Liang,LI Yingkun,GONG Lunkun,et al. Coupled investigation on drag reduction and thermal protection mechanism induced by a novel combinational spike and multi-jet strategy in hypersonic flows[J]. International Journal of Heat and Mass Transfer,2019,131: 944-964. doi: 10.1016/j.ijheatmasstransfer.2018.11.119
    [24] 黄杰,姚卫星. 高超声速飞行器激波控制减阻技术[J]. 宇航学报,2020,41(10): 1280-1287. doi: 10.3873/j.issn.1000-1328.2020.10.005

    HUANG Jie,YAO Weixing. Drag reduction of hypersonic vehicles by shock control[J]. Journal of Astronautics,2020,41(10): 1280-1287. (in Chinese) doi: 10.3873/j.issn.1000-1328.2020.10.005
    [25] KALIMUTHU R, RATHAKRISHNAN E. Aerospike for drag reduction in hypersonic flow[R]. Hartford, CT, US: 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2008.
    [26] HAYASHI K,ASO S,TANI Y. Experimental study on thermal protection system by opposing jet in supersonic flow[J]. Journal of Spacecraft and Rockets,2006,43(1): 233-236. doi: 10.2514/1.15332
    [27] HUANG Wei,LI Langquan,CHEN Xiaoqian et al. Parametric effect on the flow and mixing properties of transverse gaseous injection flow fields with streamwise slot: a numerical study[J]. International Journal of Hydrogen Energy,2017,42(2): 1252-1263. doi: 10.1016/j.ijhydene.2016.09.028
    [28] MOTOYAMA N, MIHARA K, MIYAJIMA R et al. Thermal protection and drag reduction with use of spike in hypersonic flow[R]. Kyoto: 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, 2001.
    [29] HAYASHI K, ASO S. Effect of pressure ratio on aerodynamic heating reduction due to opposing jet[R]. Orlando, US: 33rd AIAA Fluid Dynamics Conference and Exhibit, 2003.
    [30] NAKAMURA T, KANEKO M, MENSHOV I, et al. Numerical simulation on aerodynamic interaction between a side jet and flow around a blunt body in hypersonic flow[R]. Reno, Nevada, US : 41st Aerospace Sciences Meeting and Exhibit, 2003.
  • 加载中
图(38) / 表(2)
计量
  • 文章访问数:  62
  • HTML浏览量:  51
  • PDF量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 网络出版日期:  2023-08-17

目录

    /

    返回文章
    返回