留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿热环境下ZT7H/5429复合材料层合板的拉伸性能

常楠 辜良勇 张勇波 郭建超

常楠, 辜良勇, 张勇波, 等. 湿热环境下ZT7H/5429复合材料层合板的拉伸性能[J]. 航空动力学报, 2023, 38(11):2659-2665 doi: 10.13224/j.cnki.jasp.20220354
引用本文: 常楠, 辜良勇, 张勇波, 等. 湿热环境下ZT7H/5429复合材料层合板的拉伸性能[J]. 航空动力学报, 2023, 38(11):2659-2665 doi: 10.13224/j.cnki.jasp.20220354
CHANG Nan, GU Liangyong, ZHANG Yongbo, et al. Tensile properties of ZT7H/5429 composite laminates under hygrothermal environment[J]. Journal of Aerospace Power, 2023, 38(11):2659-2665 doi: 10.13224/j.cnki.jasp.20220354
Citation: CHANG Nan, GU Liangyong, ZHANG Yongbo, et al. Tensile properties of ZT7H/5429 composite laminates under hygrothermal environment[J]. Journal of Aerospace Power, 2023, 38(11):2659-2665 doi: 10.13224/j.cnki.jasp.20220354

湿热环境下ZT7H/5429复合材料层合板的拉伸性能

doi: 10.13224/j.cnki.jasp.20220354
基金项目: 国家自然科学基金(52005159)
详细信息
    作者简介:

    常楠(1982-),男,高级工程师,博士,主要从事飞机结构设计研究

    通讯作者:

    张勇波(1984-),男,副教授,博士,主要从事结构安全与可靠性研究。E-mail:zhangyongbo@buaa.edu.cn

  • 中图分类号: V258;TB332

Tensile properties of ZT7H/5429 composite laminates under hygrothermal environment

  • 摘要:

    为湿热环境条件下ZT7H/5429复合材料层合板的拉伸破坏应变基准值提供了一种精细化确定方法。通过在不同湿热环境下对含孔复合材料层合板进行拉伸试验,定量分析了温度和湿度对于层合板拉伸破坏应变的影响,并采用小子样整体推断技术建立了拉伸破坏应变预测模型。结果表明:拉伸破坏应变随温度升高而下降,并且下降幅度趋于平缓,而湿度所产生的影响并不显著。在拉伸破坏应变预测曲面的基础上,通过引入单侧容限系数进一步确定了拉伸破坏应变B基准值。相比传统单点法仅分析单一状态试验数据来获得B基准值,该方法充分考虑了不同状态下试验数据之间的关系模型,得到的B基准值具有2%~25%的提升,为复合材料结构的精细化设计提供了理论依据。

     

  • 图 1  试件示意图(单位:mm)

    Figure 1.  Schematic diagram of specimen (unit:mm)

    图 2  试件破坏模式

    Figure 2.  Failure mode of specimens

    图 3  20%相对湿度下拉伸试验结果

    Figure 3.  Tensile tests results under 20% relative humidity

    图 4  50%相对湿度下拉伸试验结果

    Figure 4.  Tensile tests results under 50% relative humidity

    图 5  80%相对湿度下拉伸试验结果

    Figure 5.  Tensile tests results under 80% relative humidity

    图 6  拉伸试验结果

    Figure 6.  Results of tensile tests

    图 7  对数拉伸破坏应变标准差

    Figure 7.  Logarithmic standard deviation of tensile failure strain

    图 8  拉伸破坏应变预测曲面

    Figure 8.  Tensile failure strain prediction surface

    图 9  拉伸许用应变曲面

    Figure 9.  Tensile allowable strain surface

    表  1  ZT7H/5429复合材料层合板试验矩阵

    Table  1.   ZT7H/5429 composite laminates test matrix

    参数数值及说明
    材料ZT7H/5429
    铺层顺序[−45/0/45/90/0/0/−45/90/45/0]s
    开孔直径/mm6.35
    试件尺寸/mm3250 × 36 × 2.5
    温度/℃2560100130
    试件
    数量
    相对
    湿度/%
    208888
    508887
    808888
    下载: 导出CSV

    表  2  线性回归分析结果

    Table  2.   Results of linear regression analysis

    相对湿度/%$\hat C$$\hat m$
    2010099−0.093
    507518−0.015
    808243−0.043
    下载: 导出CSV

    表  3  线性异方差回归分析结果

    Table  3.   Results of linear variance regression analysis

    参数$\hat C$$\hat m$$\hat \lambda $${\hat \eta _0}$${\hat \eta _1}$
    估计结果8552−0.052−0.0140.012−0.008
    下载: 导出CSV

    表  4  传统单点法与本文方法比较

    Table  4.   Comparison of the traditional single-point method with the proposed method

    温度/℃相对湿度/%拉伸许用值/10−6提升率/%
    单点法本文方法
    252071506965−2.59
    2550681969481.90
    25806069693114.21
    6020612265496.98
    605068536533−4.67
    6080608465177.12
    100205149631822.70
    1005068076303−7.41
    1001805225628720.34
    13020577162037.48
    13050609261881.57
    13080599461722.98
    下载: 导出CSV
  • [1] GARG A,CHALAK H D. A review on analysis of laminated composite and sandwich structures under hygrothermal conditions[J]. Thin-Walled Structures,2019,142: 205-226. doi: 10.1016/j.tws.2019.05.005
    [2] NACHTANE M,TARFAOUI M,SASSI S,et al. An investigation of hygrothermal aging effects on high strain rate behaviour of adhesively bonded composite joints[J]. Composites Part B: Engineering,2019,172: 111-120. doi: 10.1016/j.compositesb.2019.05.030
    [3] LIU T Q,LIU X,FENG P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects[J]. Composites Part B: Engineering,2020,191: 107958.1-107958.57. doi: 10.1016/j.compositesb.2020.107958
    [4] LIU W C. Principles for determining material allowable and design allowable values of composite aircraft structures[J]. Procedia Engineering,2011,17: 279-285. doi: 10.1016/j.proeng.2011.10.029
    [5] 沈真. 复合材料飞机结构设计许用值及其确定原则[J]. 航空学报,1998,19(4): 2-9. doi: 10.3321/j.issn:1000-6893.1998.04.001

    SHEN Zhen. Design allowables of composite aircraft structures and their determination principles[J]. Acta Aeronautica et Astronautica Sinica,1998,19(4): 2-9. (in Chinese) doi: 10.3321/j.issn:1000-6893.1998.04.001
    [6] 杨乃宾,章怡宁. 复合材料飞机结构设计[M]. 北京:航空工业出版社,2002:88-101.
    [7] VALLMAJO O,COZAR I R,FURTADO C,et al. Virtual calculation of the B-value allowables of notched composite laminates[J]. Composite Structures,2019,212: 11-21. doi: 10.1016/j.compstruct.2018.12.049
    [8] CANDIDO G M,COSTA M L,REZENDE M C,et al. Hygrothermal effects on quasi-isotropic carbon epoxy laminates with machined and molded edges[J]. Composites Part B:Engineering,2008,39(3): 490-496. doi: 10.1016/j.compositesb.2007.03.007
    [9] US Department of Defense. Composite materials handbook: Volume 1 polymer matrix composites guidelines for characterization of structural materials MIL-HDBK-17-1F[M]. Washington DC:Department of Defense,2002:466-490.
    [10] Federal Aeronautics Administration.Composite materials handbook (CMH-17):Volume 1 polymer matrix composites[M]. New York:SAE International,2012:3387-3416.
    [11] 刘衰财,刘湘云. 民机复合材料结构设计许用值及其确定方法[J]. 南京航空航天大学学报,2018,50(1): 81-85. doi: 10.16356/j.1005-2615.2018.01.011

    LIU Shuaicai,LIU Xiangyun. Design alloableness and evaluation methods of civil aircraft composite structures[J]. Journal of Nanjing University of Aeronautics and Astronautics,2018,50(1): 81-85. (in Chinese) doi: 10.16356/j.1005-2615.2018.01.011
    [12] ROCHA I B C M,RAIJMAEKERS S,NIJSSEN R P L,et al. Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine blades[J]. Composite Structures,2017,174: 110-122. doi: 10.1016/j.compstruct.2017.04.028
    [13] ZAFAR A,BERTOCCO F,SCHJODT-THOMSEN J,et al. Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites[J]. Composites Science and Technology,2012,72(6): 656-666. doi: 10.1016/j.compscitech.2012.01.010
    [14] GU Y,LIU H,LI M,et al. Macro- and micro-interfacial properties of carbon fiber reinforced epoxy resin composite under hygrothermal treatments[J]. Journal of Reinforced Plastics and Composites,2013,33(4): 369-379.
    [15] TSERPES K,TZATZADAKIS V,KATSIROPOULOS C. Effect of hygrothermal ageing on the interlaminar shear strength of carbon fiber-reinforced rosin-based epoxy bio-composites[J]. Composite Structures,2019,226:111211.1-111211.3.
    [16] PEREZ-PACHECO E,CAUICH-CUPUL J I,VALADEZ-GONZÁLEZ A,et al. Effect of moisture absorption on the mechanical behavior of carbon fiber/epoxy matrix composites[J]. Journal of Material Science,2013,48(5): 1873-1882. doi: 10.1007/s10853-012-6947-4
    [17] ZHONG Y,JOSHI S C. Impact resistance of hygrothermally conditioned composite laminates with different lay-ups[J]. Journal of Composite Materials,2015,49(7): 829-841. doi: 10.1177/0021998314526078
    [18] AOKI Y,YAMADA K,ISHIKAWA T. Effect of hygrothermal condition on compression after impact strength of CFRP laminates[J]. Composites Science and Technology,2008,68(6): 1376-1383. doi: 10.1016/j.compscitech.2007.11.015
    [19] ZENKOUR A M. Hygrothermal effects on the bending of angle-ply composite plates using a sinusoidal theory[J]. Composite Structures,2012,94(12): 3685-3696. doi: 10.1016/j.compstruct.2012.05.033
    [20] 赵锐. 三维编织碳纤维/环氧树脂基复合材料的湿热残余应力研究[D]. 天津:天津大学,2010.

    ZHAO Rui. Study on hygrothermal residual stress of 3D braided carbon fiber/epoxy resin composites[D]. Tianjin:Tianjin University,2010. (in Chinese)
    [21] ZHANG J,QI D,ZHOU L,et al. A progressive failure analysis model for composite structures in hygrothermal environments[J]. Composite Structures,2015,133: 331-342. doi: 10.1016/j.compstruct.2015.07.063
    [22] Standard test method of open-hole tensile strength of polymer matrix composite laminates:ASTM D5766/D5766M-11[S]. West Conshohocken,US:ASTM International,2018:1-7.
    [23] 傅惠民. 二维单侧容限系数方法[J]. 航空学报,1993,14(3): 166-172. doi: 10.3321/j.issn:1000-6893.1993.03.009

    FU Huimin. A method of two-dimensional one-sided tolerance factors[J]. Acta Aeronautica et Astronautica Sinica,1993,14(3): 166-172. (in Chinese) doi: 10.3321/j.issn:1000-6893.1993.03.009
    [24] 傅惠民. 线性异方差回归分析[J]. 航空学报,1994,15(3): 295-302. doi: 10.3321/j.issn:1000-6893.1994.03.007

    FU Huimin. Linear variance regression analysis[J]. Acta Aeronautica et Astronautica Sinica,1994,15(3): 295-302. (in Chinese) doi: 10.3321/j.issn:1000-6893.1994.03.007
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  128
  • HTML浏览量:  97
  • PDF量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 网络出版日期:  2022-09-22

目录

    /

    返回文章
    返回