留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内壁结构对气体中心式同轴离心喷嘴喷雾特性影响

高玉超 楚威 苏凌宇 姜传金 谢远 仝毅恒

高玉超, 楚威, 苏凌宇, 等. 内壁结构对气体中心式同轴离心喷嘴喷雾特性影响[J]. 航空动力学报, 2024, 39(5):20220360 doi: 10.13224/j.cnki.jasp.20220360
引用本文: 高玉超, 楚威, 苏凌宇, 等. 内壁结构对气体中心式同轴离心喷嘴喷雾特性影响[J]. 航空动力学报, 2024, 39(5):20220360 doi: 10.13224/j.cnki.jasp.20220360
GAO Yuchao, CHU Wei, SU Lingyu, et al. Gas-centered swirl coaxial injectors spray with variable inner wall structures[J]. Journal of Aerospace Power, 2024, 39(5):20220360 doi: 10.13224/j.cnki.jasp.20220360
Citation: GAO Yuchao, CHU Wei, SU Lingyu, et al. Gas-centered swirl coaxial injectors spray with variable inner wall structures[J]. Journal of Aerospace Power, 2024, 39(5):20220360 doi: 10.13224/j.cnki.jasp.20220360

内壁结构对气体中心式同轴离心喷嘴喷雾特性影响

doi: 10.13224/j.cnki.jasp.20220360
基金项目: 国家自然科学基金(12002386)
详细信息
    作者简介:

    高玉超(1996-),男,硕士生,研究方向为液体火箭发动机喷雾与燃烧

    通讯作者:

    仝毅恒(1987-),男,讲师,博士,研究方向为液体火箭发动机喷雾与燃烧。E-mail:yiheng_tong@sina.com

  • 中图分类号: V231

Gas-centered swirl coaxial injectors spray with variable inner wall structures

  • 摘要:

    通过改变气体中心式同轴离心喷嘴的气喷嘴内壁结构,分别对平滑内壁(A)、内壁加凹腔(B)和内壁加凸起(C)的3种喷嘴的喷雾特性进行了实验观测,同时为分析气喷嘴内壁结构改变引起的流场变化,在不考虑液相的情况下对纯气相流场进行了三维模拟研究。结果表明:3种喷嘴的雾化锥角均随气体质量流率的增加而减小,随液体质量流率的增加而增大。气喷嘴内壁加凹腔,对喷嘴的雾化锥角、破碎长度以及自激振荡频率几乎没有影响;而气喷嘴内壁加凸起则对喷雾特性有显著影响。相同工况下,内壁加凸起会使气喷嘴出口的引射作用增强,雾化锥角减小,同时气液间更强的相互作用使喷雾破碎长度随之减小。喷雾自激振荡发生时,内壁凸起亦会导致喷雾自激振荡频率随之增大。3种喷嘴的自激振荡频率均随气体质量流率的增加而增大,并对3种喷嘴的喷雾自激振荡诱发及维持机理进行了分析。通过实验探究了不同凹腔、凸起大小对喷雾特性的影响,对于B喷嘴,其喷雾的雾化锥角、破碎长度几乎一致,自激振荡频率亦差别不大;C喷嘴的雾化锥角、破碎长度均小于B喷嘴,且随凸起的增大而减小,而自激振荡频率均大于B喷嘴,且随凸起的增大而增大。

     

  • 图 1  喷雾实验系统示意图

    Figure 1.  Schematic of the spraying experimental system

    图 2  GCSC喷嘴结构示意图

    Figure 2.  Structural diagram of the GCSC injector

    图 3  3种气喷嘴结构示意图

    Figure 3.  Structural diagram of three gas injectors

    图 4  雾化锥角的提取

    Figure 4.  Extraction of spray angle

    图 5  破碎长度的提取

    Figure 5.  Extraction of breakup length

    图 6  自激振荡频率提取

    Figure 6.  Extraction of self-pulsation frequency

    图 7  计算域、网格及边界条件

    Figure 7.  Compute domains, grids, and boundary conditions

    图 8  网格无关性检验

    Figure 8.  Validation of grid independent

    图 9  A、B2、C2三种结构气喷嘴雾化锥角变化示意图

    Figure 9.  Structural diagram of the changed spray angle in gas-injectors A, B2 and C2

    图 10  $ \dot{m} $g=6 g/s时气相流场Y向速度云图

    Figure 10.  Y-velocity contours of gas flow field at $ \dot{m} $g=6 g/s

    图 11  $\dot{m}_{\rm{g}}$=6 g/s时气相流场Z向速度云图和流线图

    Figure 11.  Streamtraces and Z velocity contours of gas flow field at $ \dot{m}_{\rm{g}} $=6 g/s

    图 12  $ \dot{m} $g=6 g/s时破碎长度对比

    Figure 12.  Comparison of breakup length at $ \dot{m} $g=6 g/s

    图 13  3种气喷嘴结构自激振荡频率和振幅对比

    Figure 13.  Comparison of self-pulsation frequency and amplitude in the three structures of gas injectors

    图 14  $ \dot{m} $l=40 g/s,$ \dot{m}_{\rm{g}} $=6 g/s时A、B2、C2三种喷嘴喷雾POD

    Figure 14.  POD decomposition of injectors A, B2, C2 at $ \dot{m} $l=40 g/s,$ \dot{m}_{\rm{g}} $=6 g/s

    图 15  3种不同气喷嘴组合的一个周期喷雾自激振荡图像

    Figure 15.  Self-pulsation images of one cycle for three different gas injectors

    图 16  喷嘴自激振荡原理示意图

    Figure 16.  Schematic of injector self-pulsation principle

    图 17  不同凹腔、凸起大小对喷雾特性的影响规律

    Figure 17.  Influence of different concave cavities and projections sizes on spray characteristics

    图 18  $ \dot{m} $l=50 g/s时A、C1、C2、C3喷雾图像对比

    Figure 18.  Spray images of injectors A, C1, C2 and C3 at $ \dot{m} $l=50 g/s

    图 19  C1、C2、C3喷嘴气相流场Y向速度云图

    Figure 19.  Y velocity contours of gas flow field for injectors C1, C2 and C3

    表  1  喷嘴尺寸参数

    Table  1.   Geometrical parameters of injector

    参数数值
    外喷嘴切向孔个数n8.0
    外喷嘴内径do/mm10.0
    内喷嘴内径dg/mm6.0
    切向孔与中心孔的距离Rt/mm9.7
    切向孔直径t/mm0.6
    内喷嘴外径dt/mm8.8
    l1/mm2.0
    l2/mm0.8
    l3/mm0.2、0.6、1.0
    l4/mm2.0
    l5/mm0.8
    l6/mm0.2、0.6、1.0
    下载: 导出CSV

    表  2  实验工况

    Table  2.   Working conditions of experiments

    参数氧化剂燃料
    模拟介质空气过滤水
    喷注压降/MPa0.012~0.045 (A喷嘴)0.180~1.230
    质量流率$ / $(g/s)4~830~80
    下载: 导出CSV
  • [1] 刘阳阳,何国强,魏祥庚,等. 内直外旋气液同轴式喷嘴流量及雾化特性[J]. 推进技术,2016,37(7): 1280-1286. doi: 10.13675/j.cnki.tjjs.2016.07.011

    LIU Yangyang,HE Guoqiang,WEI Xianggeng,et al. Flow rate and spray characteristics of gas centered swirl gas-liquid coaxial injector[J]. Journal of Propulsion Technology,2016,37(7): 1280-1286. (in Chinese) doi: 10.13675/j.cnki.tjjs.2016.07.011
    [2] 杨立军, 富庆飞. 液体火箭发动机推力室设计[M]. 北京: 北京航空航天大学出版社, 2013.
    [3] SIVAKUMAR D,KULKARNI V. Regimes of spray formation in gas-centered swirl coaxial atomizers[J]. Experiments in Fluids,2011,51(3): 587-596. doi: 10.1007/s00348-011-1073-7
    [4] JEON J,HONG M,HAN Y M,et al. Experimental study on spray characteristics of gas-centered swirl coaxial injectors[J]. Journal of Fluids Engineering,2011,133(12): 121303.
    [5] KULKARNI V,SIVAKUMAR D,OOMMEN C,et al. Liquid sheet breakup in gas-centered swirl coaxial atomizers[J]. Journal of Fluids Engineering,2010,132(1): 011303.
    [6] SIDDHARTH K S,PANCHAGNULA M V,THARAKAN T J. Effect of gas swirl on the performance of a gas-centered swirl co-axial injector[J]. Atomization and Sprays,2017,27(8): 741-757. doi: 10.1615/AtomizSpr.2017019923
    [7] JOSEPH A, NANDAGOPALAN P, THARAKAN T J, et al. Effect of orifice recess on the droplet size distribution of sprays discharging from gas-centered swirl coaxial atomizers[M]//SAHA A, DAS D, SRIVASTAVA R, et al. Fluid mechanics and fluid power: contemporary research. New Delhi: Springer, 2017: 1091-1100.
    [8] KIM J G,HAN Y M,CHOI H S,et al. Study on spray patterns of gas-centered swirl coaxial (GCSC) injectors in high pressure conditions[J]. Aerospace Science and Technology,2013,27(1): 171-178. doi: 10.1016/j.ast.2012.08.004
    [9] 张蒙正,李鳌,李进贤,等. 气/液同轴离心式喷嘴流量及雾化特性实验[J]. 推进技术,2004,25(1): 19-22. doi: 10.3321/j.issn:1001-4055.2004.01.006

    ZHANG Mengzheng,LI Ao,LI Jinxian,et al. Experimental study on flow rate and spray characteristic of coaxial centrifugal injector[J]. Journal of Propulsion Technology,2004,25(1): 19-22. (in Chinese) doi: 10.3321/j.issn:1001-4055.2004.01.006
    [10] BAZAROV V G,YANG V. Liquid-propellant rocket engine injector dynamics[J]. Journal of Propulsion and Power,1998,14(5): 797-806. doi: 10.2514/2.5343
    [11] EBERHART C, LINEBERRY D, FREDERICK R. Propellant thrott-ling effects on self-pulsation of liquid rocket swirl-coaxial injection[R]. AIAA 2012-4204, 2012.
    [12] 徐顺. 气体中心型气液同轴离心式喷嘴动态雾化特性研究[D]. 长沙: 国防科技大学, 2016.

    XU Shun. Research on the dynamic spray characteristics of the gas-centered swirl coaxial injector[D]. Changsha: National University of Defense Technology, 2016. (in Chinese)
    [13] SAHOO S K,GADGIL H. Dynamics of self-pulsation in gas-centered swirl coaxial injector: an experimental study[J]. Journal of Propulsion and Power,2021,37(3): 450-462. doi: 10.2514/1.B38043
    [14] CANINO J V, HEISTER S D, GARRISON L A. Hydrodynamic modeling of oxidizer-rich staged combustion injector flow[C]// JANNAF (Joint Army Navy NASA Air Force) Joint Propulsion Meeting. Monterey, USA: ACM Press, 2004: 1-11.
    [15] ZHANG Liwei,WANG Xingjian,LI Yixing,et al. Supercritical fluid flow dynamics and mixing in gas-centered liquid-swirl coaxial injectors[J]. Physics of Fluids,2018,30(7): 1-16.
    [16] 萨顿·比布拉兹. 火箭发动机基础[M]. 9版. 谢侃, 李世鹏, 李军伟, 等, 译. 北京: 北京理工大学出版社, 2019.
    [17] 黄玉辉,周进,胡小平,等. 气液同轴式喷嘴自激振荡的试验现象和声学模型及对火箭发动机不稳定燃烧的影响[J]. 声学学报,1998,23(5): 459-465. doi: 10.15949/j.cnki.0371-0025.1998.05.011

    HUANG Yuhui,ZHOU Jin,HU Xiaoping,et al. Experiment and acoustic model for the self-oscillation of coaxial swirl injector and its influence to combustion of liquid rocket engine[J]. Acta Acustica,1998,23(5): 459-465. (in Chinese) doi: 10.15949/j.cnki.0371-0025.1998.05.011
    [18] 杨立军,富庆飞. 喷嘴对供应系统到燃烧室压力振荡传递幅频特性的影响[J]. 航空动力学报,2008,23(2): 305-310. doi: 10.13224/j.cnki.jasp.2008.02.027

    YANG Lijun,FU Qingfei. Effect of injector on pressure oscillation amplitude-frequency characteristics from pipeline to combustion chamber[J]. Journal of Aerospace Power,2008,23(2): 305-310. (in Chinese) doi: 10.13224/j.cnki.jasp.2008.02.027
    [19] 杨立军,富庆飞. 由喷嘴连接的燃烧室到供应系统压力振荡传递过程研究[J]. 航空动力学报,2009,24(5): 1182-1186. doi: 10.13224/j.cnki.jasp.2009.05.035

    YANG Lijun,FU Qingfei. Investigation on pressure oscillation propagation from combustion chamber to pipeline through injector[J]. Journal of Aerospace Power,2009,24(5): 1182-1186. (in Chinese) doi: 10.13224/j.cnki.jasp.2009.05.035
    [20] ARTHUR D, VASSILVITSKII S. k-means++: the advantages of careful seeding[C]// Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007. New Orleans, USA: ACM Press, 2007: 1-11.
    [21] PARK G,LEE J,OH S,et al. Characteristics of gas-centered swirl coaxial injector with acoustic excitation of gas flow[J]. AIAA Journal,2017,55(3): 894-901. doi: 10.2514/1.J055126
    [22] 张新桥. 基于离心式喷嘴的多组分燃料喷雾燃烧过程研究[D]. 长沙: 国防科技大学, 2016.

    ZHANG Xinqiao. Research on spray combustion of multi-component fuel based on swirl injector[D]. Changsha: National University of Defense Technology, 2016. (in Chinese)
    [23] STRAKEY P A, COHN R K, TALLEY D G. The development of a methodology to scale between cold-flow and hot-fire evaluations of gas-centered swirl coaxial injectors[R]. Las Vegas, USA: 52nd JA-NNAF Propulsion Meeting, 2004.
    [24] SAHOO S K,GADGIL H. Large scale unsteadiness during self-pulsation regime in a swirl coaxial injector and its influence on the downstream spray statistics[J]. International Journal of Multiphase Flow,2022,149: 103944. doi: 10.1016/j.ijmultiphaseflow.2021.103944
    [25] RAJAMANICKAM K,BASU S. Insights into the dynamics of spray-swirl interactions[J]. Journal of Fluid Mechanics,2017,810: 82-126. doi: 10.1017/jfm.2016.710
    [26] CHARALAMPOUS G,HARDALUPAS Y. Application of proper orthogonal decomposition to the morphological analysis of confined co-axial jets of immiscible liquids with comparable densities[J]. Physics of Fluids,2014,26(11): 113301. doi: 10.1063/1.4900944
    [27] KUMAR A,SAHU S. Large scale instabilities in coaxial air-water jets with annular air swirl[J]. Physics of Fluids,2019,31(12): 124103. doi: 10.1063/1.5122273
    [28] ARIENTI M,SOTERIOU M C. Time-resolved proper orthogonal decomposition of liquid jet dynamics[J]. Physics of Fluids,2009,21(11): 112104. doi: 10.1063/1.3263165
    [29] CHARALAMPOUS G,HADJIYIANNIS C,HARDALUPAS Y. Proper orthogonal decomposition of primary breakup and spray in co-axial airblast atomizers[J]. Physics of Fluids,2019,31(4): 043304. doi: 10.1063/1.5085416
    [30] 康忠涛. 气液同轴离心式喷嘴非定常雾化机理和燃烧特性研究[D]. 长沙: 国防科技大学, 2016.

    KANG Zhongtao. The unsteady atomization mechanism and combustion characteristics of gas-liquid swirl coaxial injector[D]. Changsha: National University of Defense Technology, 2016. (in Chinese)
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  85
  • HTML浏览量:  57
  • PDF量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 网络出版日期:  2023-09-25

目录

    /

    返回文章
    返回