留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外激励作用下分层旋流火焰流场结构与火焰响应特性

宋雷洋 姚倩 黄晓锋 袁丽 李建中 邓远灏 田世泽

宋雷洋, 姚倩, 黄晓锋, 等. 外激励作用下分层旋流火焰流场结构与火焰响应特性[J]. 航空动力学报, 2024, 39(5):20220362 doi: 10.13224/j.cnki.jasp.20220362
引用本文: 宋雷洋, 姚倩, 黄晓锋, 等. 外激励作用下分层旋流火焰流场结构与火焰响应特性[J]. 航空动力学报, 2024, 39(5):20220362 doi: 10.13224/j.cnki.jasp.20220362
SONG Leiyang, YAO Qian, HUANG Xiaofeng, et al. Flow field and flame response characteristics of stratified swirl flame with external excitation[J]. Journal of Aerospace Power, 2024, 39(5):20220362 doi: 10.13224/j.cnki.jasp.20220362
Citation: SONG Leiyang, YAO Qian, HUANG Xiaofeng, et al. Flow field and flame response characteristics of stratified swirl flame with external excitation[J]. Journal of Aerospace Power, 2024, 39(5):20220362 doi: 10.13224/j.cnki.jasp.20220362

外激励作用下分层旋流火焰流场结构与火焰响应特性

doi: 10.13224/j.cnki.jasp.20220362
基金项目: 产学研合作项目(HFZL2020CXY005)
详细信息
    作者简介:

    宋雷洋(1997-),男,博士生,主要从事燃烧不稳定研究

    通讯作者:

    姚倩(1990-),女,讲师,博士,主要从事高效低排放燃烧研究。E-mail:nuaa_qyao@nuaa.edu.cn

  • 中图分类号: V231.2

Flow field and flame response characteristics of stratified swirl flame with external excitation

  • 摘要:

    为了探究贫油直喷(LDI)燃烧室中剪切旋流与火焰的正反馈作用及其诱导燃烧不稳定机理,通过大涡模拟(LES)结合相空间重构、模态分解分析方法研究了外激励作用下分层旋流火焰流场与火焰的动态响应。将流场的试验与LES时均结果进行对比,发现数值计算的速度分布与涡旋结构的大小、位置都和试验结果吻合较好。对LES采集信号与瞬时流场分析表明:燃烧室内压力与释热率脉动处于极限环振荡状态,速度脉动下回流区的收缩与扩张导致燃料和释热区发生周期性压缩与舒张,从而产生准周期释热率脉动。对LES提取的子午面数据进行模态分解,发现速度脉动和释热率脉动主要集中在射流区与剪切层处,均为进口速度激励导致的纵向脉动。

     

  • 图 1  LDI燃烧室头部结构与时均温度场

    Figure 1.  Head structure of LDI combustor and its time-averaged temperature field

    图 2  计算域网格划分

    Figure 2.  Computational domain meshing

    图 3  不同轴向位置声压响应

    Figure 3.  Sound pressure response at different axial positions

    图 4  试验系统图

    Figure 4.  Schematic of experimental setup

    图 5  子午面速度云图及流线图

    Figure 5.  Meridional velocity contour and streamline

    图 6  子午面不同轴向位置时均轴向速度分布

    Figure 6.  Time-averaged axial velocity distribution at different axial positions on meridional plane

    图 7  湍动能谱

    Figure 7.  Turbulent kinetic energy spectrum

    图 8  频域与相空间轨迹

    Figure 8.  Frequency domain and phase space trajectories

    图 9  速度、压力与释热率时域图

    Figure 9.  Time domain of velocity, pressure and heat release

    图 10  子午面流场与释热率发展情况图

    Figure 10.  Development of meridional flow field and heat release

    图 11  1个周期内PVC与涡量发展情况

    Figure 11.  Development of precession vortex core and vorticity in a time period

    图 12  y=31 mm截面瞬时压力、周向速度及流线图

    Figure 12.  y=31 mm plane instantaneous pressure, circumferential velocity and streamline diagram

    图 13  速度场与释热率脉动POD结果

    Figure 13.  Velocity field and heat release pulsation POD result

    图 14  速度与释热率脉动DMD结果

    Figure 14.  Velocity field and heat release pulsation DMD result

  • [1] LIEUWEN T C, YANG V. Gas turbine emissions[M]. Cambridge, UK: Cambridge University Press, 2013.
    [2] CORBETT N C,LINES N P. Control requirements for the RB 211 low-emission combustion system[J]. Journal of Engineering for Gas Turbines and Power,1994,116(3): 527-533. doi: 10.1115/1.2906851
    [3] 张弛,林宇震,徐华胜,等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报,2014,35(2): 332-350.

    ZHANG Chi,LIN Yuzhen,XU Huasheng,et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica,2014,35(2): 332-350. (in Chinese)
    [4] 姜磊. 低NOx双旋流燃气燃烧器流动及燃烧特性的实验研究[D]. 北京: 中国科学院大学, 2017.

    JIANG Lei. Experimental investigations of flow and combustioin characteristics for a low NOx dual-swirl gas burner[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese)
    [5] LEE C M, CHANG C T, HERBON J, et al. NASA project develops next-generation low-emissions combustor technologies[R]. AIAA-2013-0540, 2013
    [6] YOON C, GEJJI R, ANDERSON W. Computational investigation of combustion dynamics in a lean direct injection gas turbine combustor[R]. AIAA-2013-166, 2013.
    [7] HUANG C, GEJJI R, ANDERSON W E. Effects of fuel spray modeling on combustion instability predictions in a single-element lean direct injection (LDI) gas turbine combustor[R]. AIAA 2015-0188, 2015.
    [8] CANDEL S,DUROX D,SCHULLER T,et al. Dynamics of swirling flames[J]. Annual Review of Fluid Mechanics,2014,46(1): 147-173. doi: 10.1146/annurev-fluid-010313-141300
    [9] LEE H J, LEE J G, QUAY B, et al. Mechanism of combustion instability due to flame-vortex interactions in a lean premixed gas turbine combustor[R]. AIAA 2013-3726, 2013.
    [10] CHEN X L, CULLER W, PELUSO S, et al. Comparison of equivalence ratio transients on combustion instability in single-nozzle and multi-nozzle combustors[R]. ASME Paper GT2018-75427, 2018.
    [11] HUANG Cheng, GEJJI R M, ANDERSON W E, et al. Combustion dynamics behavior in a single-element lean direct injection (LDI) gas turbine combustor[R]. AIAA 2014-3433, 2014.
    [12] YOON C, GEJJI R, HUANG Cheng, et al. Computational investigation of combustion instabilities in a laboratory-scale LDI gas turbine engine[R]. AIAA 2013-3648, 2013.
    [13] GEJJI R M,HUANG Cheng,FUGGER C,et al. Parametric investigation of combustion instabilities in a single-element lean direct injection combustor[J]. International Journal of Spray and Combustion Dynamics,2019,11: 1-16.
    [14] GEJJI R M, HUANG Cheng, YOON C, et al. A parametric study of combustion dynamics in a single-element lean direct injection (LDI) gas turbine combustor[R]. AIAA 2014-0133, 2014.
    [15] HAN Xiao,LAERA D,YANG Dong,et al. Flame interactions in a stratified swirl burner: flame stabilization, combustion instabilities and beating oscillations[J]. Combustion and Flame,2020,212: 500-509. doi: 10.1016/j.combustflame.2019.11.020
    [16] SONG Heng,LIN Yuzhen,HAN Xiao,et al. The thermoacoustic instability in a stratified swirl burner and its passive control by using a slope confinement[J]. Energy,2020,195: 116956. doi: 10.1016/j.energy.2020.116956
    [17] POINSOT T, VEYNANTE D. Theoretical and numerical combustion[M]. 2nd ed. Philadelphia, US: Edwards Inc., 2005.
    [18] NICOUD F,DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion,1999,62(3): 183-200. doi: 10.1023/A:1009995426001
    [19] YUAN L,SHEN C. Large eddy simulation of combustion instability in a tripropellant air heater[J]. Acta Astronautica,2016,129: 59-73. doi: 10.1016/j.actaastro.2016.08.002
    [20] PATEL N,KıRTAŞ M,SANKARAN V,et al. Simulation of spray combustion in a lean-direct injection combustor[J]. Proceedings of the Combustion Institute,2007,31(2): 2327-2334. doi: 10.1016/j.proci.2006.07.232
    [21] HAN Xingsi,MORGANS A S. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver[J]. Combustion and Flame,2015,162(5): 1778-1792. doi: 10.1016/j.combustflame.2014.11.039
    [22] HAN Xingsi,LI Jingxuan,MORGANS A S. Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model[J]. Combustion and Flame,2015,162(10): 3632-3647. doi: 10.1016/j.combustflame.2015.06.020
    [23] ZHANG Zhihao,LIU Xiao,GONG Yaozhen,et al. Investigation on flame characteristics of industrial gas turbine combustor with different mixing uniformities[J]. Fuel,2020,259: 116297. doi: 10.1016/j.fuel.2019.116297
    [24] HERMETH S,STAFFELBACH G,GICQUEL L Y M,et al. Bistable swirled flames and influence on flame transfer functions[J]. Combustion and Flame,2014,161(1): 184-196. doi: 10.1016/j.combustflame.2013.07.022
    [25] LU Yipin,XIAO Yinli,WU Juan,et al. Nonlinear combustion instability analysis of a bluff body burner based on the flame describing function[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2022,236(9): 1751-1765. doi: 10.1177/09544100211044021
    [26] JUNIPER M P,SUJITH R I. Sensitivity and nonlinearity of thermoacoustic oscillations[J]. Annual Review of Fluid Mechanics,2018,50: 661-689. doi: 10.1146/annurev-fluid-122316-045125
    [27] ZOU Yong,DONNER R V,MARWAN N,et al. Complex network approaches to nonlinear time series analysis[J]. Physics Reports,2019,787: 1-97. doi: 10.1016/j.physrep.2018.10.005
    [28] MARWAN N,CARMEN ROMANO M,THIEL M,et al. Recurrence plots for the analysis of complex systems[J]. Physics Reports,2007,438(5/6): 237-329.
    [29] HUANG Ying,YANG V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science,2009,35(4): 293-364. doi: 10.1016/j.pecs.2009.01.002
    [30] BERKOOZ G,HOLMES P,LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics,1993,25: 539-575. doi: 10.1146/annurev.fl.25.010193.002543
    [31] 张弛,王波,邹鹏飞,等. 同心旋流分层火焰的外激脉动特性统计学分析[J]. 航空动力学报,2017,32(8): 1801-1808. doi: 10.13224/j.cnki.jasp.2017.08.002

    ZHANG Chi,WANG Bo,ZOU Pengfei,et al. Statistical analysis on the forced dynamic of internally-staged-swirling stratified flame[J]. Journal of Aerospace Power,2017,32(8): 1801-1808. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.08.002
    [32] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics,2010,656: 5-28. doi: 10.1017/S0022112010001217
    [33] 张弛,周宇晨,韩啸,等. 同心旋流分层预混火焰的动力学模态分析[J]. 推进技术,2020,41(3): 595-604. doi: 10.13675/j.cnki.tjjs.190356

    ZHANG Chi,ZHOU Yuchen,HAN Xiao,et al. Dynamic mode analysis on internally-staged-swirling stratified premixed flame[J]. Journal of Propulsion Technology,2020,41(3): 595-604. (in Chinese) doi: 10.13675/j.cnki.tjjs.190356
    [34] CHEN K K,TU J H,ROWLEY C W. Variants of dynamic mode decomposition: boundary condition, koopman, and Fourier analyses[J]. Journal of Nonlinear Science,2012,22(6): 887-915. doi: 10.1007/s00332-012-9130-9
    [35] 童福林,李新亮,段焰辉. 超声速压缩拐角激波/边界层干扰动力学模态分解[J]. 航空学报,2017,38(12): 121376.

    TONG Fulin,LI Xinliang,DUAN Yanhui. Dynamic mode decomposition of shock wave and supersonic boundary layer interactions in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica,2017,38(12): 121376. (in Chinese)
    [36] PATWARDHAN S S,NAKOD P,ORSINO S,et al. Numerical investigation of combustion instabilities in a single-element lean direct inject combustor using flamelet based approaches[J]. Journal of Engineering for Gas Turbines and Power,2020,142(9): 091006. doi: 10.1115/1.4047110
    [37] POPE S B. Turbulent flows[M]. New York: Cambridge University Press, 2000.
    [38] GARCÍA-VILLALBA M,FRÖHLICH J,RODI W. Identification and analysis of coherent structures in the near field of a turbulent unconfined annular swirling jet using large eddy simulation[J]. Physics of Fluids,2006,18(5): 55103.1-55103.17.
    [39] SYRED N. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems[J]. Progress in Energy and Combustion Science,2006,32(2): 93-161. doi: 10.1016/j.pecs.2005.10.002
    [40] LIU Yunpeng,LI Jinghua,HAN Qixiang,et al. Study of combustion oscillation mechanism and flame image processing[J]. AIAA Journal,2019,57(2): 824-835. doi: 10.2514/1.J057614
  • 加载中
图(14)
计量
  • 文章访问数:  70
  • HTML浏览量:  22
  • PDF量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 网络出版日期:  2023-09-25

目录

    /

    返回文章
    返回