留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轮工作叶片不同区域簸箕形孔的气膜冷却特性实验

陈磊 张灵俊 王文璇 曹飞飞 刘存良

陈磊, 张灵俊, 王文璇, 等. 涡轮工作叶片不同区域簸箕形孔的气膜冷却特性实验[J]. 航空动力学报, 2024, 39(5):20220368 doi: 10.13224/j.cnki.jasp.20220368
引用本文: 陈磊, 张灵俊, 王文璇, 等. 涡轮工作叶片不同区域簸箕形孔的气膜冷却特性实验[J]. 航空动力学报, 2024, 39(5):20220368 doi: 10.13224/j.cnki.jasp.20220368
CHEN Lei, ZHANG Lingjun, WANG Wenxuan, et al. Experiment on film cooling characteristics of dustpan shaped holes at different positions of turbine blade[J]. Journal of Aerospace Power, 2024, 39(5):20220368 doi: 10.13224/j.cnki.jasp.20220368
Citation: CHEN Lei, ZHANG Lingjun, WANG Wenxuan, et al. Experiment on film cooling characteristics of dustpan shaped holes at different positions of turbine blade[J]. Journal of Aerospace Power, 2024, 39(5):20220368 doi: 10.13224/j.cnki.jasp.20220368

涡轮工作叶片不同区域簸箕形孔的气膜冷却特性实验

doi: 10.13224/j.cnki.jasp.20220368
基金项目: 国家科技重大专项(J2019-Ⅲ-0019-0063);陕西省杰出青年科学基金(2021JC-11)
详细信息
    作者简介:

    陈磊(1985—),研究员,硕士,研究方向为航空发动机热端部件冷却设计。E-mail:clstone1985@163.com

    通讯作者:

    刘存良(1983—),男,教授,博士,研究方向为航空发动机热端部件高效冷却与热分析技术。 E-mail:liucunliang@nwpu.edu.cn

  • 中图分类号: V231.1

Experiment on film cooling characteristics of dustpan shaped holes at different positions of turbine blade

  • 摘要:

    采用压敏漆(PSP)技术实验研究了簸箕形孔在涡轮工作叶片吸力面和压力面不同位置的气膜冷却效率分布特性,分析了吹风比(吹风比为0.5、1.0、2.0)和湍流度(湍流度为 0.62%、16.0%对气膜冷却效率的影响规律。实验结果表明:吸力面和压力面上的簸箕形孔最佳吹风比分别在M=1.0和M=2.0附近,吸力面上的簸箕形孔在低湍流度和中等吹风比(吹风比为1.0)下具有较高的气膜冷效,压力面上的簸箕形孔在高吹风比和高湍流度下具有更大的气膜覆盖面积和气膜冷效;吸力面的气膜覆盖面积和展向平均气膜冷效整体显著高于压力面,压力面曲率较大处的簸箕形孔气膜冷效最差。湍流度对气膜冷效的影响程度与吹风比相当;湍流度增强使得压力面气膜冷效降低,但提高了吸力面在高吹风比下的气膜冷效,同时降低了吸力面气膜冷效对吹风比变化的敏感性。

     

  • 图 1  实验系统示简图

    Figure 1.  Sketch of the experiment system

    图 2  叶片表面气膜孔排布位置和孔型结构

    Figure 2.  Details of film hole locations and configurations

    图 3  叶片表面压力系数分布

    Figure 3.  Distribution of pressure coefficient on blade

    图 4  吸力面SS1孔排气膜冷效η分布

    Figure 4.  Film-cooling effectiveness η distribution of SS1 hole row on suction surface

    图 5  吸力面SS2孔排气膜冷效η分布

    Figure 5.  Film-cooling effectiveness η distribution of SS2 hole row on suction surface

    图 6  压力面PS1孔排气膜冷效${\eta} $分布

    Figure 6.  Film-cooling effectiveness $\eta $ distribution of PS1 hole row on pressure surface

    图 7  压力面PS2气膜孔排气膜冷效${\eta} $分布

    Figure 7.  Film cooling effectiveness $\eta $ distribution of PS2 hole row on pressure surface

    图 8  吸力面展向平均气膜冷效$\overline \eta $分布

    Figure 8.  Distribution of the laterally averaged film-cooling effectiveness $\overline \eta $ on suction surface

    图 9  压力面展向平均气膜冷效$\overline \eta $分布

    Figure 9.  Distribution of the laterally averaged film-cooling effectiveness $\overline \eta $ on pressure surface

    表  1  实验工况参数

    Table  1.   Experiment conditions

    参数数值
    $ Re $/106 1.71
    $ {T}_{\mathrm{u}}/{\text{%}} $ 0.62 (无湍流格栅),16
    $ M $ 0.5,1.0,2.0
    下载: 导出CSV

    表  2  气膜冷效不确定度

    Table  2.   Film-cooling effectiveness uncertainty

    $ \eta $ $ (\Delta \eta /\eta ) /{\text{%}} $
    0.5 1.41
    0.4 2.12
    0.3 3.29
    0.2 5.66
    0.1 12.7
    下载: 导出CSV
  • [1] ZHANG Jingzhou,ZHANG Shengchang,WANG Chunhua,et al. Recent advances in film cooling enhancement: a review[J]. Chinese Journal of Aeronautics,2020,33(4): 1119-1136. doi: 10.1016/j.cja.2019.12.023
    [2] DENG Hefang,TENG Jinfang,ZHU Mingmin,et al. Overall cooling performance evaluation for film cooling with different winglet pairs vortex generators[J]. Applied Thermal Engineering,2022,201: 117731.1-117731.13.
    [3] MENG Long,LI Haiwang,XIE Gang,et al. Film cooling performance of blade pressure side with three-row film holes under rotating condition[J]. International Journal of Heat and Mass Transfer,2022,188: 122593.1-122593.11.
    [4] PAITICH L C,RICHER P,JODOIN B,et al. An experimental study of the directional effects of effusion cooling on the cooling film effectiveness in Gas Turbine Combustors [R]. Tennessee,USA: AIAA Scitech 2021 Forum,2021.
    [5] GANZERT W,HILDEBRANDT T,FOTTNER L. Systematic experimental and numerical investigations on the aerothermodynamics of a film cooled turbine cascade with variation of the cooling hole shape: Part Ⅰ experimental Approach[R]. Munich,Germany: ASME Turbo Expo 2000: Power for Land,Sea,and Air,2000.
    [6] SAUMWEBER C,SCHULZ A. Free-stream effects on the cooling performance of cylindrical and fan-shaped cooling holes[R]. Copenhagen,Denmark: ASME Turbo Expo: Power for Land,Sea,and Air,2012.
    [7] ZHANG L Z,MOON H K. Turbine blade film cooling study: the effects of film hole location on the pressure side[R]. Montreal,Canada: ASME Turbo Expo: Power for Land,Sea,and Air,2007.
    [8] 刘聪,朱惠人,付仲议,等. 涡轮导叶吸力面簸箕型孔气膜冷却特性实验研究[J]. 推进技术,2016,37(6): 1142-1150. LIU Cong,ZHU Huiren,FU Zhongyi,et al. Experimental study of film cooling characteristics for dust-pan shaped holes on suction side in turbine guide vane[J]. Journal of Propulsion Technology,2016,37(6): 1142-1150. (in Chinese

    LIU Cong, ZHU Huiren, FU Zhongyi, et al. Experimental study of film cooling characteristics for dust-pan shaped holes on suction side in turbine guide vane[J]. Journal of Propulsion Technology, 2016, 37(6): 1142-1150. (in Chinese)
    [9] 姚春意,朱惠人,刘存良,等. 涡轮导叶压力面气膜孔排位置对气膜冷却特性的影响[J]. 推进技术,2020,41(7): 1560-1570. YAO Chunyi,ZHU Huiren,LIU Cunliang,et al. Effects of film hole row location on film cooling characteristic for pressure side of a turbine vane[J]. Journal of Propulsion Technology,2020,41(7): 1560-1570. (in Chinese doi: 10.13675/j.cnki.tjjs.190485

    YAO Chunyi, ZHU Huiren, LIU Cunliang, et al. Effects of film hole row location on film cooling characteristic for pressure side of a turbine vane[J]. Journal of Propulsion Technology, 2020, 41(7): 1560-1570. (in Chinese) doi: 10.13675/j.cnki.tjjs.190485
    [10] 朱惠人,马兰,许都纯,等. 孔位对涡轮叶片表面气膜冷却换热系数的影响[J]. 推进技术,2005,26(4): 302-306. ZHU Huiren,MA Lan,XU Duchun,et al. Influences of position of hole-rows on film cooling heat transfer of turbine blade surface[J]. Journal of Propulsion Technology,2005,26(4): 302-306. (in Chinese doi: 10.13675/j.cnki.tjjs.2005.04.004

    ZHU Huiren, MA Lan, XU Duchun, et al. Influences of position of hole-rows on film cooling heat transfer of turbine blade surface[J]. Journal of Propulsion Technology, 2005, 26(4): 302-306. (in Chinese) doi: 10.13675/j.cnki.tjjs.2005.04.004
    [11] MOORE J D,YOON C,BOGARD D G. Surface curvature effects on film cooling performance for shaped holes on a model turbine blade[J]. Journal of Turbomachinery,2020,142(11): 111008.1-111008.17.
    [12] WINKA J R,ANDERSON J B,BOGARD D G,et al. Convex curvature effects on film cooling adiabatic effectiveness[R]. San Antonio,Texas,USA: Turbine Technical Conference and Exposition,2013.
    [13] ZHANG L J,JAISWAL R S. Turbine nozzle endwall film cooling study using pressure sensitive paint[R]. New Orleans,US: ASME Turbo Expo: Power for Land,Sea,and Air,2001.
    [14] ZHANG Luzeng,MOON H K. Turbine nozzle endwall inlet film cooling: the effect of a back-facing step[R]. Anaheim,US: ASME International Mechanical Engineering Congress and Exposition,2004.
    [15] WRIGHT L M,GAO Z H,VARVEL T A,et al. Assessment of steady state PSP,TSP,and IR measurement techniques for flat plate film cooling[R]. San Francisco,US: ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS,NEMS,and Electronic Systems,2005.
    [16] NARZARY D P,LIU Kuochun,RALLABANDI A P,et al. Influence of coolant density on turbine blade film-cooling using pressure sensitive paint technique[J]. Journal of Turbomachinery,2012,134(3): 031006.1-031006.10.
    [17] KLINE S J,MCCLINTOCK F A. Description of uncertainties in single-sample experiments[J]. Mechanical Engineering,1953,75(7): 3-9.
    [18] SAUMWEBER C,SCHULZ A. Effect of geometry variations on the cooling performance of fan-shaped cooling holes[J]. Journal of Turbomachinery,2012,134(6): 905-919.
    [19] HAVEN B A,YAMAGATA D K,KUROSAKA M,et al. Anti-kidney pair of vortices in shaped holes and their influence on film cooling effectiveness[R]. Orlando,US: ASME International Gas Turbine and Aeroengine Congress and Exhibition,1997.
    [20] BOGARD D G,SCHMIDT D L,TABBITA M. Characterization and laboratory simulation of turbine airfoil surface roughness and associated heat transfer[R]. New York: ASME International Gas Turbine and Aeroengine Congress and Exhibition,1996.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  112
  • HTML浏览量:  33
  • PDF量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 网络出版日期:  2023-12-15

目录

    /

    返回文章
    返回