留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

进气支板周向位置对动叶激励和振动的影响

彭威 任晓栋 李雪松 顾春伟 吴宏

彭威, 任晓栋, 李雪松, 等. 进气支板周向位置对动叶激励和振动的影响[J]. 航空动力学报, 2024, 39(5):20220371 doi: 10.13224/j.cnki.jasp.20220371
引用本文: 彭威, 任晓栋, 李雪松, 等. 进气支板周向位置对动叶激励和振动的影响[J]. 航空动力学报, 2024, 39(5):20220371 doi: 10.13224/j.cnki.jasp.20220371
PENG Wei, REN Xiaodong, LI Xuesong, et al. Influence of circumferential position of intake struts on rotor blade excitation and vibration[J]. Journal of Aerospace Power, 2024, 39(5):20220371 doi: 10.13224/j.cnki.jasp.20220371
Citation: PENG Wei, REN Xiaodong, LI Xuesong, et al. Influence of circumferential position of intake struts on rotor blade excitation and vibration[J]. Journal of Aerospace Power, 2024, 39(5):20220371 doi: 10.13224/j.cnki.jasp.20220371

进气支板周向位置对动叶激励和振动的影响

doi: 10.13224/j.cnki.jasp.20220371
基金项目: 国家科技重大专项(J2019-Ⅱ-0005-0025)
详细信息
    作者简介:

    彭威(1997-),男,博士生,主要从事压气机叶片强迫振动研究。E-mail:pw19@mails.tsinghua.edu.cn

    通讯作者:

    李雪松(1978-),男,副教授,博士,主要从事叶轮机械气动热力学方面的研究。E-mail:xs-li@mail.tsinghua.edu.cn

  • 中图分类号: V232.4

Influence of circumferential position of intake struts on rotor blade excitation and vibration

  • 摘要:

    为探究进气支板与下游叶片相对周向位置对压气机动叶所受激励和振动的影响规律和机理,模拟了一个带进气支板的重型燃气轮机压气机前1.5级。通过对动叶片的流场和振动的分析发现:进气支板周向位置对总压比和总温比影响很小,但会明显改变动叶受到的激励和振动水平。当进气支板尾迹与导叶尾迹重合时,两种尾迹叠加加强,导致动叶的激励和振动整体增强。支板位置会明显改变支板尾迹和下游静叶势流对动叶的叠加影响,这对弦长中部非定常载荷和整体振动的影响较明显,对前尾缘附近影响很小。研究结果为支板的安装提供了参考和指导。

     

  • 图 1  压气机几何模型

    Figure 1.  Geometry model of the compressor

    图 2  支板与IGV的相对位置(灰线表示同一周向位置)

    Figure 2.  Circumferential relative position of struts and IGVs (gray lines indicate the same circumferential position)

    图 3  展向50%处的部分流体网格

    Figure 3.  Part of fluid mesh at 50% blade span

    图 4  网格收敛性验证

    Figure 4.  Mesh convergence verification

    图 5  非定常计算结果和试验结果

    Figure 5.  Results of unsteady calculation and test

    图 6  R1动叶有限元网格

    Figure 6.  Finite element mesh of R1 rotor blade

    图 7  某压气机动叶叶尖振幅

    Figure 7.  Tip amplitude of a compressor rotor blade

    图 8  R1动叶轴向力

    Figure 8.  Axial force of R1 rotor blade

    图 9  R1动叶的Campbell图

    Figure 9.  Campbell diagram of R1 rotor blade

    图 10  通过频域结果重构的叶尖位移瞬态响应(垂直于弦长方向)

    Figure 10.  Blade tip transient response reconstructed from frequency domain results (perpendicular to chord)

    图 11  展向50%处的静熵(白线为激波)

    Figure 11.  Static entropy at 50% blade span (white line is shock wave)

    图 12  IGV/R1交界面展向50%处总压时均值

    Figure 12.  Time-averaged total pressure at 50% blade span at IGV/R1 interface

    图 13  R1动叶表面EO54静压幅值(白线为激波)

    Figure 13.  EO54 amplitude of static pressure on the surface of R1 rotor blade (white line is shock wave)

    图 14  R1动叶展向50%处静压EO54分量

    Figure 14.  EO54 component of static pressure at 50% blade span of R1 rotor blade

    图 15  R1动叶EO54频率附近的模态振型

    Figure 15.  Modal shape of R1 rotor blade near EO54 frequency

    图 16  R1动叶EO54位移振幅

    Figure 16.  EO54 displacement amplitude of R1 rotor blade

    图 17  R1动叶表面EO45静压幅值分布(白线为激波)

    Figure 17.  EO45 amplitude of static pressure on the surface of R1 rotor blade (white line is shock wave)

    图 18  R1/S1交界面展向50%处静压时均值

    Figure 18.  Time-averaged static pressure at 50% blade span at R1/S1 interface

    图 19  R1动叶展向50%处静压EO45分量

    Figure 19.  EO45 component of static pressure at 50% blade span of R1 rotor blade

    图 20  R1动叶EO45频率附近的模态振型

    Figure 20.  Modal shape of R1 rotor blade near EO45 frequency

    图 21  R1动叶EO45位移振幅

    Figure 21.  EO45 displacement amplitude of R1 rotor blade

    表  1  R1动叶受力的主要频率与叶片数关系

    Table  1.   Relationship between main frequencies of R1 rotor blade force and number of blades

    频率/Hz激励阶次EO频率倍数
    StrutIGVS1
    135091
    2700182
    4050273
    67504551
    81005461
    下载: 导出CSV

    表  2  R1轴向力主要频率分量

    Table  2.   Main frequency component of R1 axial force

    频率/Hz轴向力/N轴向力
    相对差值/%
    C#M#
    13503.773.77 0.11
    27002.812.81−0.20
    40502.552.43−4.77
    67502.791.13−59.55
    81003.402.36−30.64
    下载: 导出CSV

    表  3  R1动叶最大振幅

    Table  3.   Maximum amplitude of R1 rotor blade

    频率/Hz振幅/μm相对差值/%
    C#M#
    13503.023.102.65
    27000.981.035.10
    40500.780.802.56
    67505.634.20−25.40
    81000.630.52−17.46
    下载: 导出CSV

    表  4  IGV/R1交界面处总压EO54分量

    Table  4.   EO54 component of total pressure at IGV/R1 interface

    尾迹来源总压谐波
    分量/Pa
    总压幅值/
    Pa
    相位角/
    (°)
    进气支板+
    进口导叶(C#)
    1079.9+566.88i1219.627.70
    进气支板+
    进口导叶(M#)
    660.32+335.82i740.8126.96
    单独进口导叶865.93+447.35i974.6627.32
    单独进气支板(C#)213.95+119.53i245.0829.19
    单独进气支板(M#)−205.60−111.54i233.91−151.52
    下载: 导出CSV
  • [1] SRINIVASAN A V. Flutter and resonant vibration characteristics of engine blades[J]. Journal of Engineering for Gas Turbines and Power,1997,119(4): 742-775. doi: 10.1115/1.2817053
    [2] 李茂义,袁巍,陆亚钧,等. 进气畸变对跨声速轴流压气机气动影响的机理研究[J]. 航空动力学报,2014,29(2): 374-383.

    LI Maoyi,YUAN Wei,LU Yajun,et al. Mechanism investigation of aerodynamic effect on the inlet flow distortion in a transonic axial-flow compressor[J]. Journal of Aerospace Power,2014,29(2): 374-383. (in Chinese)
    [3] WANG Ziwei,JIANG Xiong,CHEN Ti,et al. Numerical simulation of transonic compressor under circumferential inlet distortion and rotor/stator interference using harmonic balance method[J]. Modern Physics Letters B,2018,32(12/13): 1840021.1-1840021.6.
    [4] BARRECA P,PINELLI L,VANTI F,et al. Aeroelastic investigation of a transonic compressor rotor with multi-row effects[J]. Energy Procedia,2018,148: 58-65. doi: 10.1016/j.egypro.2018.08.019
    [5] SANDERS C,TERSTEGEN M,JESCHKE P,et al. Rotor-stator interactions in a 2.5-stage axial compressor: Part Ⅱ impact of aerodynamic modeling on forced response[J]. Journal of Turbomachinery,2019,141(10): 101008.1-101008.9.
    [6] HALAWA T,GADALA M S. Numerical investigation of compressor blades deformation during stall development into surge[J]. Journal of Propulsion and Power,2017,33(5): 1074-1086. doi: 10.2514/1.B36076
    [7] LIANG Feng,XIE Zhifeng,XIA Aiguo,et al. Aeroelastic simulation of the first 1.5-stage aeroengine fan at rotating stall[J]. Chinese Journal of Aeronautics,2020,33(2): 529-549. doi: 10.1016/j.cja.2019.05.004
    [8] YANG Rongfei,WANG Guoliang,LIU Haixu,et al. Numerical study on the flow mechanism of compressor rotor blade vibration under different inlet probe configurations[J]. International Journal of Aerospace Engineering,2020,2020: 1-12.
    [9] HAN Le,WEI Dasheng,WANG Yanrong,et al. Analysis method of nonsynchronous vibration and influence of tip clearance flow instabilities on nonsynchronous vibration in an axial transonic compressor rotor[J]. Journal of Turbomachinery,2021,143(11): 111014.1-111014.15.
    [10] 李其汉,王延荣,王建军. 航空发动机叶片高循环疲劳失效研究[J]. 航空发动机,2003,29(4): 16-18, 41.

    LI Qihan,WANG Yanrong,WANG Jianjun. Investigation of high cycle fatigue failures for the aero engine blades[J]. Aeroengine,2003,29(4): 16-18, 41. (in Chinese)
    [11] MANWARING S R,WISLER D C. Unsteady aerodynamics and gust response in compressors and turbines[J]. Journal of Turbomachinery,1993,115(4): 724-740. doi: 10.1115/1.2929308
    [12] ARMSTRONG E K. Recent blade vibration techniques[J]. Journal of Engineering for Power,1967,89(3): 437-444. doi: 10.1115/1.3616710
    [13] MAILACH R,VOGELER K. Rotor-stator interactions in a four-stage low-speed axial compressor: Part Ⅰ unsteady profile pressures and the effect of clocking[J]. Journal of Turbomachinery,2004,126(4): 507-518. doi: 10.1115/1.1791641
    [14] VAHDATI M,SAYMA A I,IMREGUN M. An integrated nonlinear approach for turbomachinery forced response prediction: Part Ⅱ case studies[J]. Journal of Fluids and Structures,2000,14(1): 103-125. doi: 10.1006/jfls.1999.0254
    [15] BAUER H J,SCHULZ A,SCHWITZKE M. Aerodynamic excitation of blade vibrations in radial turbines[J]. MTZ Worldwide,2013,74(6): 48-54. doi: 10.1007/s38313-013-0065-9
    [16] CHIANG H W D,TURNER M G. Compressor blade forced response due to downstream vane-strut potential interaction[J]. Journal of Turbomachinery,1996,118(1): 134-142. doi: 10.1115/1.2836594
    [17] JONES M G, BARTON M T, O’BRIEN W F. The use of circumferentially nonuniform stators to attenuate LP compressor rotor-stator-strut aerodynamic and mechanical interactions[C]//Proceedings of ASME International Gas Turbine and Aeroengine Congress and Exhibition. Chicago, US: ASME, 2015: 1-8
    [18] WALKER A D, MARIAH I, HALL C. An experimental, aerodynamic evaluation of design choices for a low-pressure compressor transition duct[C]//Proceedings of ASME Turbo Expo: Turbomachinery Technical Conference and Exposition. Chicago, US: ASME, 2021: 091004.1-091004.14
    [19] CIZMAS P G A,DORNEY D J. The influence of clocking on unsteady forces of compressor and turbine blades[J]. International Journal of Turbo and Jet Engines,2000,17(2): 133-142.
    [20] LI H D,HE L. Blade count and clocking effects on three-bladerow interaction in a transonic turbine[J]. Journal of Turbomachinery,2003,125(4): 632-640. doi: 10.1115/1.1622711
    [21] LEE Yutai,FENG Jinzhang. Potential and viscous interactions for a multi-blade-row compressor[J]. Journal of Turbomachinery,2004,126(4): 464-472. doi: 10.1115/1.1740778
    [22] KEY N L, LAWLESS P B, FLEETER S. An investigation of the flow physics of vane clocking using unsteady flow measurements[C]//Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air. Berlin, Germany: ASME, 2009: 2003-2014.
    [23] SALONTAY J R,KEY N L,FULAYTER R D. Investigation of flow physics of vane clocking effects on rotor resonant response[J]. Journal of Propulsion and Power,2011,27(5): 1001-1007. doi: 10.2514/1.B34081
    [24] SAYMA A I,VAHDATI M,IMREGUN M. An integrated nonlinear approach for turbomachinery forced response prediction: Part Ⅰ formulation[J]. Journal of Fluids and Structures,2000,14(1): 87-101. doi: 10.1006/jfls.1999.0253
    [25] CHAHINE C,VERSTRAETE T,HE L. A comparative study of coupled and decoupled fan flutter prediction methods under variation of mass ratio and blade stiffness[J]. Journal of Fluids and Structures,2019,85: 110-125. doi: 10.1016/j.jfluidstructs.2018.12.009
    [26] MOFFATT S,HE L. On decoupled and fully-coupled methods for blade forced response prediction[J]. Journal of Fluids and Structures,2005,20(2): 217-234. doi: 10.1016/j.jfluidstructs.2004.10.012
    [27] SUN Hai’ou,REN Aoyu,WANG Yanhua,et al. Deformation and vibration analysis of compressor rotor blades based on fluid-structure coupling[J]. Engineering Failure Analysis,2021,122: 105216.1-105216.18.
    [28] RAUBENHEIMER G. Vibration excitation of axial compressor rotor blades[D]. Cape Town, South Africa: University of Stellenbosch, 2011.
  • 加载中
图(21) / 表(4)
计量
  • 文章访问数:  50
  • HTML浏览量:  26
  • PDF量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 网络出版日期:  2023-10-25

目录

    /

    返回文章
    返回