留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双层壁冷却结构的综合冷效数值解耦研究

刘润洲 李海旺 由儒全 黄毅 陶智

刘润洲, 李海旺, 由儒全, 等. 基于双层壁冷却结构的综合冷效数值解耦研究[J]. 航空动力学报, 2024, 39(5):20220372 doi: 10.13224/j.cnki.jasp.20220372
引用本文: 刘润洲, 李海旺, 由儒全, 等. 基于双层壁冷却结构的综合冷效数值解耦研究[J]. 航空动力学报, 2024, 39(5):20220372 doi: 10.13224/j.cnki.jasp.20220372
LIU Runzhou, LI Haiwang, YOU Ruquan, et al. Numerical decoupling of overall cooling effectiveness based on double-wall cooling structure[J]. Journal of Aerospace Power, 2024, 39(5):20220372 doi: 10.13224/j.cnki.jasp.20220372
Citation: LIU Runzhou, LI Haiwang, YOU Ruquan, et al. Numerical decoupling of overall cooling effectiveness based on double-wall cooling structure[J]. Journal of Aerospace Power, 2024, 39(5):20220372 doi: 10.13224/j.cnki.jasp.20220372

基于双层壁冷却结构的综合冷效数值解耦研究

doi: 10.13224/j.cnki.jasp.20220372
基金项目: 国家科技重大专项(2017-Ⅲ-0010-0036); 北京市自然科学基金(3222034); 先进航空动力创新工作站项目(HKCX2022-01-007)
详细信息
    作者简介:

    刘润洲(1997-),男,博士生,主要从事涡轮叶片冷却研究。E-mail:liurunzhou_buaa@163.com

    通讯作者:

    由儒全(1991-),男,副研究员,博士,主要从事涡轮叶片冷却研究。E-mail:youruquan10353@buaa.edu.cn

  • 中图分类号: V231.1

Numerical decoupling of overall cooling effectiveness based on double-wall cooling structure

  • 摘要:

    采用数值解耦的方法,定量分析了双层壁平板冷却结构的综合冷效与内部冷却、气膜孔内冷却和冷气覆盖之间的关系。吹风比为0.25、0.5、1和1.5。通过研究发现,吹风比对双层壁模型的综合冷效有明显影响。当吹风比由0.25增大到1.5时,综合冷效增大57.9%。内部冷却占主导地位的区域主要是冲击气流的驻点区。气膜孔内冷却影响最大的区域为气膜孔出口的上游,而且沿流向孔内冷却的影响逐渐减小。冷气覆盖对综合冷效的影响沿流向逐渐积累,在第3个气膜孔出口附近冷气覆盖的影响最大。而且在冷气覆盖区域的影响要大于在远离气膜孔区域的影响。当吹风比增大至1时,孔内冷却对综合冷效的影响已经超过了冷气覆盖。

     

  • 图 1  仿真模型示意图

    Figure 1.  Schematic diagram of simulation model

    图 2  不同模型的边界条件

    Figure 2.  Boundary conditions for different cases

    图 3  仿真模型的边界条件设置

    Figure 3.  Boundary conditions of simulation model

    图 4  数值仿真结果与实验结果的对比

    Figure 4.  Comparison of numerical simulation and experimental results

    图 5  网格无关性验证

    Figure 5.  Grid independence verification

    图 6  综合冷效云图

    Figure 6.  Contours of overall cooling effectiveness

    图 7  绝热冷效云图

    Figure 7.  Contours of adiabatic film cooling effectiveness

    图 8  M=0.5时y/D=2.5处无量纲温度分布(无内部冷却)

    Figure 8.  Distribution of dimensionless temperature at slice y/D=2.5 for case without internal cooling with M=0.5

    图 9  综合冷效差值Δϕ(无内部冷却)

    Figure 9.  Δϕ between base case and case without internal cooling

    图 10  M=0.5时y/D=2.5处无量纲温度分布(无孔内冷却)

    Figure 10.  Distribution of dimensionless temperature at slice y/D=2.5 for case without bore cooling with M=0.5

    图 11  综合冷效差值Δϕ(无孔内冷却)

    Figure 11.  Δϕ between base case and case without bore cooling

    图 12  吹风比M=0.5时y/D=2.5处速度分布

    Figure 12.  Distribution of velocity at slice y/D=2.5 for case without coolant coverage with M=0.5

    图 13  综合冷效差值Δϕ(无冷气覆盖)

    Figure 13.  Δϕ between base case and case without coolant coverage

    图 14  近壁温度分布

    Figure 14.  Fluid temperature near the wall

    图 15  综合冷效的展向平均结果

    Figure 15.  Laterally-averaged overall cooling effectiveness for different cases

    表  1  边界条件设置

    Table  1.   Boundary conditions

    参数数值
    Tg/K600
    Tc/K303
    Tg/Tc1.98
    Reg3300
    M0.25, 0.5, 1, 1.5
    ksolid/(W/(m·K))10.6
    下载: 导出CSV

    表  2  面积平均综合冷效结果

    Table  2.   Area-averaged overall cooling effectiveness

    吹风比面积平均综合冷效
    0.250.3441
    0.50.4491
    10.5187
    1.50.5434
    下载: 导出CSV
  • [1] SEN B,SCHMIDT D L,BOGARD D G. Film cooling with compound angle holes: heat transfer[J]. Journal of Turbomachinery,1996,118(4): 800-806. doi: 10.1115/1.2840937
    [2] ZHANG Jingzhou,ZHANG Shengchang,WANG Chunhua,et al. Recent advances in film cooling enhancement: a review[J]. Chinese Journal of Aeronautics,2020,33(4): 1119-1136. doi: 10.1016/j.cja.2019.12.023
    [3] ACHARYA S, KANANI Y. Advances in film cooling heat transfer[M]//Advances in Heat Transfer. Amsterdam, Holland: Elsevier, 2017: 91-156.
    [4] BOGARD D G,THOLE K A. Gas turbine film cooling[J]. Journal of Propulsion and Power,2006,22(2): 249-270. doi: 10.2514/1.18034
    [5] HAN J C. Turbine blade cooling studies at Texas A&M University: 1980-2004[J]. Journal of Thermophysics and Heat Transfer,2006,20(2): 161-187. doi: 10.2514/1.15403
    [6] GRITSCH M,COLBAN W,SCHÄR H,et al. Effect of hole geometry on the thermal performance of fan-shaped film cooling holes[J]. Journal of Turbomachinery,2005,127(4): 718-725. doi: 10.1115/1.2019315
    [7] GRITSCH M,SCHULZ A,WITTIG S. Adiabatic wall effectiveness measurements of film-cooling holes with expanded exits[J]. Journal of Turbomachinery,1998,120(3): 549-556. doi: 10.1115/1.2841752
    [8] SAUMWEBER C,SCHULZ A. Free-stream effects on the cooling performance of cylindrical and fan-shaped cooling holes[J]. Journal of Turbomachinery,2012,134(6): 061007.1-061007.12.
    [9] SAUMWEBER C,SCHULZ A. Effect of geometry variations on the cooling performance of fan-shaped cooling holes[J]. Journal of Turbomachinery,2012,134(6): 061008.1-061008.16.
    [10] BRYANT C E,RUTLEDGE J L. A computational technique to evaluate the relative influence of internal and external cooling on overall effectiveness[J]. Journal of Turbomachinery,2020,142(5): 051008.1-051008.11.
    [11] ALBERT J E, BOGARD D G, CUNHA F. Adiabatic and overall effectiveness for a film cooled blade[R]. ASME Paper GT2004-53998, 2004.
    [12] CHAVEZ K, SLAVENS T N, BOGARD D. Effects of internal and film cooling on the overall effectiveness of a fully cooled turbine airfoil with shaped holes[R]. ASME Paper GT2016-57992, 2016.
    [13] NATHAN M L,DYSON T E,BOGARD D G,et al. Adiabatic and overall effectiveness for the showerhead film cooling of a turbine vane[J]. Journal of Turbomachinery,2014,136(3): 031005.1-031005.9.
    [14] RAVELLI S, DOBROWOLSKI L, BOGARD D G. Evaluating the effects of internal impingement cooling on a film cooled turbine blade leading edge[R]. ASME Paper GT2010-23002, 2010.
    [15] LIU Cunliang,XIE Gang,WANG Rui,et al. Study on analogy principle of overall cooling effectiveness for composite cooling structures with impingement and effusion[J]. International Journal of Heat and Mass Transfer,2018,127: 639-650. doi: 10.1016/j.ijheatmasstransfer.2018.07.085
    [16] XIE G, LIU C L, WANG R, et al. Experimental study on analogy principle of overall cooling effectiveness for composite cooling structures with both internal cooling and film cooling[R]. ASME Paper GT2019-90705, 2019.
    [17] MENSCH A,THOLE K A. Overall effectiveness of a blade endwall with jet impingement and film cooling[J]. Journal of Engineering for Gas Turbines and Power,2014,136(3): 031901.1-031901.13.
    [18] MENSCH A,THOLE K A,CRAVEN B A. Conjugate heat transfer measurements and predictions of a blade endwall with a thermal barrier coating[J]. Journal of Turbomachinery,2014,136(12): 121003.1-121003.11.
    [19] MENSCH A,THOLE K A. Conjugate heat transfer analysis of the effects of impingement channel height for a turbine blade endwall[J]. International Journal of Heat and Mass Transfer,2015,82: 66-77. doi: 10.1016/j.ijheatmasstransfer.2014.10.076
    [20] TERRELL E J, MOUZON B D, BOGARD D G. Convective heat transfer through film cooling holes of a gas turbine blade leading edge[R]. ASME Paper GT2005-69003, 2005.
    [21] MOUZON B D, TERRELL E J, ALBERT J E, et al. Net heat flux reduction and overall effectiveness for a turbine blade leading edge[R]. ASME Paper GT2005-69002, 2005.
    [22] RAVELLI S,BARIGOZZI G. Numerical evaluation of heat/mass transfer analogy for leading edge showerhead film cooling on a first-stage vane[J]. International Journal of Heat and Mass Transfer,2019,129: 842-854. doi: 10.1016/j.ijheatmasstransfer.2018.10.034
    [23] BRYANT C E,WIESE C J,RUTLEDGE J L,et al. Experimental evaluations of the relative contributions to overall effectiveness in turbine blade leading edge cooling[J]. Journal of Turbomachinery,2019,141(4): 041007.1-041007.15.
    [24] XIE Gang,LIU Cunliang,NIU Jiajia,et al. Experimental investigation on analogy principle of conjugate heat transfer for effusion/impingement cooling[J]. International Journal of Heat and Mass Transfer,2020,147: 118919.1-118919.13.
    [25] SHI B, LI J, LI M F, et al. Overall cooling effectiveness on a flat plate with both film cooling and impingement cooling in hot gas condition ASME Paper[R]. ASME Paper GT2016-57224, 2016.
    [26] GOMATAM RAMACHANDRAN S,SHIH T I P. Biot number analogy for design of experiments in turbine cooling[J]. Journal of Turbomachinery,2015,137(6): 061002.1-061002.14.
    [27] ZHOU Weilun, DENG Qinghua, FENG Zhenping. Conjugate heat transfer analysis for laminated cooling effectiveness: Part A effects of surface curvature[R]. ASME Paper GT2016-57243, 2016.
    [28] DENG Qinghua, ZHOU Weilun, FENG Zhenping. Conjugate heat transfer analysis for laminated cooling effectiveness: Part B effects of film hole incline angle[R]. ASME Paper GT2016-57256, 2016.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  92
  • HTML浏览量:  73
  • PDF量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 网络出版日期:  2023-10-19

目录

    /

    返回文章
    返回