留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层混合管排气出口导流遮挡的冷却与红外辐射特性

宋健 张靖周 单勇

宋健, 张靖周, 单勇. 双层混合管排气出口导流遮挡的冷却与红外辐射特性[J]. 航空动力学报, 2024, 39(5):20220374 doi: 10.13224/j.cnki.jasp.20220374
引用本文: 宋健, 张靖周, 单勇. 双层混合管排气出口导流遮挡的冷却与红外辐射特性[J]. 航空动力学报, 2024, 39(5):20220374 doi: 10.13224/j.cnki.jasp.20220374
SONG Jian, ZHANG Jingzhou, SHAN Yong. Cooling and infrared radiation characteristics of diversion shielding at exhaust outlet of double-layer mixing duct[J]. Journal of Aerospace Power, 2024, 39(5):20220374 doi: 10.13224/j.cnki.jasp.20220374
Citation: SONG Jian, ZHANG Jingzhou, SHAN Yong. Cooling and infrared radiation characteristics of diversion shielding at exhaust outlet of double-layer mixing duct[J]. Journal of Aerospace Power, 2024, 39(5):20220374 doi: 10.13224/j.cnki.jasp.20220374

双层混合管排气出口导流遮挡的冷却与红外辐射特性

doi: 10.13224/j.cnki.jasp.20220374
基金项目: 国家科技重大专项(J2019-Ⅲ-0009-0053)
详细信息
    作者简介:

    宋健(1998-),男,硕士生,主要从事直升机红外隐身研究。E-mail:992287293@qq.com

    通讯作者:

    张靖周(1964-),男,教授,博士,主要从事航空发动机热端部件冷却研究。E-mail:zhangjz@nuaa.edu.cn

  • 中图分类号: V231.3;V211.3

Cooling and infrared radiation characteristics of diversion shielding at exhaust outlet of double-layer mixing duct

  • 摘要:

    以降低一体化红外抑制器混合管出口导流片温度及其红外辐射强度为目的,设计了双层混合管和带冷却结构的导流器。通过CFD和红外辐射强度空间分布数值仿真,研究了双层混合管强迫冷却进气流量、导流器出口形状和波瓣瓣数对排气喷流和排气混合管红外辐射强度的影响。计算结果表明,双层混合管+导流器结构相较于基准模型(单层混合管,导流片无冷却)可以有效降低导流器可视表面高温区,导流器自身的红外辐射强度降幅可达82.9%;导流器出口的波瓣可以诱导流向涡对,强化冷却气流与混合管出口排气尾流掺混,排气红外辐射强度相对于基准模型最大的降幅可达68.2%,混合管及其排气的总体辐射强度的降幅峰值可达86.4%。排气红外辐射强度以及总体辐射强度均随着波瓣瓣数的减少而逐渐减小,导流器出口过多的波瓣瓣数设计反而不利于流向涡的发展。混合管总体辐射强度随着强迫冷却气流流量的增加而逐渐减小,冷却气流流量与主流流量比值为0.1时,相对于不通冷却气流的情况,总体辐射强度的降幅峰值为68.3%。

     

  • 图 1  单层混合管+单层导流结构示意图

    Figure 1.  Schematic diagram of single-layer mixing duct and single-layer diversion structure

    图 2  双层混合管强迫冷却进气+导流器结构模型

    Figure 2.  Structural model of forced cooling inlet and deflector with double mixing duct

    图 3  混合管出口段缺口示意图

    Figure 3.  Schematic diagram of the notch in the outlet section of the mixing duct

    图 4  导流器及其波瓣出口结构示意图

    Figure 4.  Schematic diagram of the flow guide structure

    图 5  实验系统简图

    Figure 5.  Schematic diagram of experimental system

    图 6  实验模型三维示意图

    Figure 6.  Three-dimensional schematic diagram of experimental model

    图 7  实验段实物图

    Figure 7.  Photo of experimental section

    图 8  出口温度实验值与数值计算值对比

    Figure 8.  Comparison between experimental and numerical values of outlet temperature

    图 9  计算域与局部网格示意图

    Figure 9.  Schematic diagram of computational domain and local grids

    图 10  探测点空间分布

    Figure 10.  Spatial distribution map of detection points

    图 11  导流片温度分布

    Figure 11.  Temperature distribution of the guide vane

    图 12  混合管出口下游1D截面的温度分布云图

    Figure 12.  Temperature distribution cloud map of the 1D section downstream of the outlet of the mixing duct

    图 13  探测平面3~5 μm波段红外辐射强度(A-0、B-1和C-1模型)

    Figure 13.  Infrared radiation intensity in 3—5 μm band of detection plane (A-0, B-1 and C-1 models)

    图 14  混合管出口下游1D截面的流向涡分布

    Figure 14.  Streamwise vortex distribution of 1D section downstream of mixing duct outlet

    图 15  C-4模型混合管出口下游不同截面的流向涡分布

    Figure 15.  Streamwise vortex distribution of C-4 model at different sections downstream of the mixing duct outlet

    图 16  C-4模型混合管出口下游不同截面的温度分布云图

    Figure 16.  Temperature distribution of different sections downstream of the C-4 model mixing duct outlet

    图 17  混合管出口下游1D截面的温度分布云图

    Figure 17.  Temperature distribution of the 1D section downstream of the outlet of the mixing duct

    图 18  探测平面3~5 μm波段红外辐射强度(C-1、C-2、C-3和C-4模型)

    Figure 18.  Infrared radiation intensity in the 3—5 μm band of detection plane (C-1, C-2, C-3 and C-4 models)

    图 19  不同冷却气流流量下的混合管壁面温度分布

    Figure 19.  Temperature distribution of mixing duct wall under different cooling airflow

    图 20  不同冷却气流流量下的3~5 μm波段红外辐射强度

    Figure 20.  Infrared radiation intensity in 3—5 μm band at different cooling flow rate

    表  1  计算模型特征及其命名

    Table  1.   Computational model features and naming

    模型编号 模型特点
    A-0 单层混合管,单层导流(基准模型)
    B-1 双层混合管,导流器矩形出口
    C-1 双层混合管,导流器出口波瓣n=3
    C-2 双层混合管,导流器出口波瓣n=5
    C-3 双层混合管,导流器出口波瓣n=7
    C-4 双层混合管,导流器出口波瓣n=9
    下载: 导出CSV

    表  2  不同出口波瓣瓣数的模型引射系数对比

    Table  2.   Comparison of ejection coefficients of models with different numbers of outlet wave

    模型编号引射系数
    C-10.864
    C-20.867
    C-30.869
    C-40.871
    下载: 导出CSV
  • [1] HEISER W H. Ejector thrust augmentation[J]. Journal of Propulsion and Power,2010,26(6): 1325-1330. doi: 10.2514/1.50144
    [2] PATERSON J. Overview of low observable technology and its effects on combat aircraft survivability[J]. Journal of Aircraft,1999,36(2): 380-388. doi: 10.2514/2.2468
    [3] RAO G A,MAHULIKAR S P. New criterion for aircraft susceptibility to infrared guided missiles[J]. Aerospace Science and Technology,2005,9(8): 701-712. doi: 10.1016/j.ast.2005.07.005
    [4] LI Cui,LI Yanzhong,WANG Lei. Configuration dependence and optimization of the entrainment performance for gas-gas and gas-liquid ejectors[J]. Applied Thermal Engineering,2012,48: 237-248. doi: 10.1016/j.applthermaleng.2011.11.041
    [5] HAKKAKI-FARD A,AIDOUN Z,OUZZANE M. A computational methodology for ejector design and performance maximisation[J]. Energy Conversion and Management,2015,105: 1291-1302. doi: 10.1016/j.enconman.2015.08.070
    [6] WU Yifei,ZHAO Hongxia,ZHANG Cunquan,et al. Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test[J]. Energy,2018,151: 79-93. doi: 10.1016/j.energy.2018.03.041
    [7] PRESZ W M Jr,MORIN B L,GOUSY R G. Forced mixer lobes in ejector designs[J]. Journal of Propulsion and Power,1988,4(4): 350-355. doi: 10.2514/3.23073
    [8] YODER D A,GEORGIADIS N J,WOLTER J D. Quadrant analysis of a mixer-ejector nozzle for supersonic transport applications[J]. Journal of Propulsion and Power,2007,23(1): 250-253. doi: 10.2514/1.25258
    [9] BARIK A K,DASH S K,GUHA A. Experimental and numerical investigation of air entrainment into an infrared suppression device[J]. Applied Thermal Engineering,2015,75: 33-44. doi: 10.1016/j.applthermaleng.2014.05.042
    [10] LIU Youhong. Experimental and numerical research on high pumping performance mechanism of lobed exhauster-ejector mixer[J]. International Communications in Heat and Mass Transfer,2007,34(2): 197-209. doi: 10.1016/j.icheatmasstransfer.2006.10.003
    [11] SHAN Yong,PAN Chengxiong,ZHANG Jingzhou. Investigation on incompressible lobed mixer–ejector performance[J]. Journal of Propulsion and Power,2015,31(1): 265-277. doi: 10.2514/1.B35279
    [12] ZHANG Jingzhou,PAN Chengxiong,SHAN Yong. Progress in helicopter infrared signature suppression[J]. Chinese Journal of Aeronautics,2014,27(2): 189-199. doi: 10.1016/j.cja.2014.02.007
    [13] PASZKO M. Infrared signature suppression systems in modern military helicopters[J]. Transactions on Aerospace Research,2017,2017(3): 63-83. doi: 10.2478/tar-2017-0022
    [14] 单勇,张靖周. 弯曲混合管引射系统引射-混合特性数值研究[J]. 南京航空航天大学学报,2008,40(2): 137-141. SHAN Yong,ZHANG Jingzhou. Numerical computation for pumping and mixing performance on mixer-ejector with curved mixing duct[J]. Journal of Nanjing University of Aeronautics and Astronautics,2008,40(2): 137-141. (in Chinese

    SHAN Yong, ZHANG Jingzhou. Numerical computation for pumping and mixing performance on mixer-ejector with curved mixing duct[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2008, 40(2): 137-141. (in Chinese)
    [15] MAQSOOD A,BIRK A M. Improving the performance of a bent ejector with inlet swirl[J]. Journal of Engineering for Gas Turbines and Power,2008,130(6): 061201.1-061201.9.
    [16] PAN Chengxiong,SHAN Yong,ZHANG Jingzhou. Parametric effects on internal aerodynamics of lobed mixer-ejector with curved mixing duct[J]. Journal of Engineering for Gas Turbines and Power,2014,136(6): 061504.1-061504.10.
    [17] ZHOU Zeyang,HUANG Jun,WANG Jinjun. Radar/infrared integrated stealth optimization design of helicopter engine intake and exhaust system[J]. Aerospace Science and Technology,2019,95: 105483.1-105483.13.
    [18] 唐正府,张靖周,单勇. 波瓣喷管-狭长出口弯曲混合管引射混合特性分析[J]. 航空动力学报,2005,20(6): 978-982. TANG Zhengfu,ZHANG Jingzhou,SHAN Yong. Investigation on ejecting and mixing characteristics of lobed nozzle with curved mixing duct and slot exit[J]. Journal of Aerospace Power,2005,20(6): 978-982. (in Chinese

    TANG Zhengfu, ZHANG Jingzhou, SHAN Yong. Investigation on ejecting and mixing characteristics of lobed nozzle with curved mixing duct and slot exit[J]. Journal of Aerospace Power, 2005, 20(6): 978-982. (in Chinese)
    [19] 蒋坤宏,张靖周,单勇,等. 一体化红外抑制器遮挡和出口修型对后机身表面温度和红外辐射特性的影响[J]. 航空学报,2020,41(2): 123497. JIANG Kunhong,ZHANG Jingzhou,SHAN Yong,et al. Effects of sheltering and outlet shaping on surface temperature and infrared radiation characteristics of rear airframe with an integrating infrared suppressor[J]. Acta Aeronautica et Astronautica Sinica,2020,41(2): 123497. (in Chinese

    JIANG Kunhong, ZHANG Jingzhou, SHAN Yong, et al. Effects of sheltering and outlet shaping on surface temperature and infrared radiation characteristics of rear airframe with an integrating infrared suppressor[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123497. (in Chinese)
    [20] 郑禛,张靖周. 导流片对大形状比出口弯曲混合管引射性能影响的数值研究[J]. 南京航空航天大学学报,2020,52(4): 540-547. ZHENG Zhen,ZHANG Jingzhou. Numerical study on effects of guide baffles on pumping performance of curved mixing duct with a large-aspect-ratio outlet[J]. Journal of Nanjing University of Aeronautics and Astronautics,2020,52(4): 540-547. (in Chinese

    ZHENG Zhen, ZHANG Jingzhou. Numerical study on effects of guide baffles on pumping performance of curved mixing duct with a large-aspect-ratio outlet[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(4): 540-547. (in Chinese)
    [21] 任利锋,张靖周,王先炜,等. 直升机后机身内埋式红外抑制器隐身性能分析[J]. 红外与激光工程,2011,40(11): 2091-2097. REN Lifeng,ZHANG Jingzhou,WANG Xianwei,et al. Analysis of stealth properties on IR radiation suppressor embed inside helicopter rear airframe[J]. Infrared and Laser Engineering,2011,40(11): 2091-2097. (in Chinese

    REN Lifeng, ZHANG Jingzhou, WANG Xianwei, et al. Analysis of stealth properties on IR radiation suppressor embed inside helicopter rear airframe[J]. Infrared and Laser Engineering, 2011, 40(11): 2091-2097. (in Chinese)
    [22] YANG Zongyao,ZHANG Jingzhou,SHAN Yong. Effects of forward-flight speed on plume flow and infrared radiation of IRS-integrating helicopter[J]. Chinese Journal of Aeronautics,2022,35(3): 155-168. doi: 10.1016/j.cja.2021.07.037
    [23] YANG Zongyao,ZHANG Jingzhou,SHAN Yong. Research on the influence of integrated infrared suppressor exhaust angle on exhaust plume and helicopter infrared radiation[J]. Aerospace Science and Technology,2021,118: 107013.1-107013.23.
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  51
  • HTML浏览量:  38
  • PDF量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 网络出版日期:  2023-11-29

目录

    /

    返回文章
    返回