留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶接修复工艺的复合材料外涵机匣强度分析

吴涵林 杨际申 姚改成 苗国磊 谭畅 石多奇 齐红宇

吴涵林, 杨际申, 姚改成, 等. 胶接修复工艺的复合材料外涵机匣强度分析[J]. 航空动力学报, 2023, 38(3):569-577 doi: 10.13224/j.cnki.jasp.20220380
引用本文: 吴涵林, 杨际申, 姚改成, 等. 胶接修复工艺的复合材料外涵机匣强度分析[J]. 航空动力学报, 2023, 38(3):569-577 doi: 10.13224/j.cnki.jasp.20220380
WU Hanlin, YANG Jishen, YAO Gaicheng, et al. Strength analysis of composite bypass casing of aero-engine in adhesive bonded repair[J]. Journal of Aerospace Power, 2023, 38(3):569-577 doi: 10.13224/j.cnki.jasp.20220380
Citation: WU Hanlin, YANG Jishen, YAO Gaicheng, et al. Strength analysis of composite bypass casing of aero-engine in adhesive bonded repair[J]. Journal of Aerospace Power, 2023, 38(3):569-577 doi: 10.13224/j.cnki.jasp.20220380

胶接修复工艺的复合材料外涵机匣强度分析

doi: 10.13224/j.cnki.jasp.20220380
基金项目: 国家科技重大专项(2017-Ⅳ-0007-0044)
详细信息
    作者简介:

    吴涵林(1999-),女,硕士生,主要从事复合材料结构强度及稳定性分析方面的研究

    通讯作者:

    齐红宇(1969-),男,教授,博士,主要从事非均匀材料结构的强度、寿命以及可靠性分析和航空绿色能源适航安全性等方面的研究。E-mail: qhy@buaa.edu.cn

  • 中图分类号: V258

Strength analysis of composite bypass casing of aero-engine in adhesive bonded repair

  • 摘要:

    航空发动机结构复材化是发动机减轻质量的主要途径。针对复合材料外涵机匣服役后的损伤特点,选用胶接修复工艺进行机匣修补。研究了不同胶接修复方法的修复效果和适用范围。基于三维渐进损伤方法,使用Abaqus软件建立了复合材料外涵机匣典型件胶接修复模型,对机匣危险区域损伤孔边和翻边处模拟了复合材料损伤的产生和演化,预测了使用填胶修复和预浸料修复的典型件模型静拉伸强度和实际机匣模型的静压缩强度。结果表明:损伤深度不超过厚度的10%时采用填胶修复以恢复气动外形,损伤深于厚度的10%至贯穿时预浸料修复能同时恢复机匣的强度和刚度。

     

  • 图 1  典型件几何尺寸(单位:mm)

    Figure 1.  Geometric dimensions of typical part (unit:mm)

    图 2  典型件的有限元模型

    Figure 2.  Finite element model of typical part

    图 3  不同磨损损伤深度的典型件位移-载荷曲线

    Figure 3.  Displacement-load curves of typical parts with different wear damage depths

    图 4  损伤深度对剩余强度和失效位移的影响

    Figure 4.  Influence of damage depth on residual strength and failure displacement

    图 5  拉伸载荷下典型件各类损伤单元个数

    Figure 5.  Number of various damage elements of typical parts under tensile load

    图 6  采用两种修复方式的典型件位移-载荷曲线

    Figure 6.  Displacement-load curves of typical parts of two repaired plans

    图 7  复合材料外涵机匣有限元模型

    Figure 7.  Finite element model of composite bypass casing of aero-engine

    图 8  复材机匣损伤前后与修补后位移-载荷曲线

    Figure 8.  Displacement-load curves of composite bypass casing before and after being repaired

    图 9  压缩载荷下机匣各类损伤单元个数

    Figure 9.  Number of damage elements of bypass casing ofaero-engine under compression load

    表  1  材料属性折减方案

    Table  1.   Material property reduction plan

    失效模式折减规则
    纤维拉伸${E}_{1}={E}_{2}={E}_{3}$=0 MPa, ${\nu }_{12}={\nu }_{13}={\nu }_{23}$=0, $G_{12}={G}_{13}={G}_{23}$=0 MPa
    基体开裂${E_2} $=0 MPa, ${G_{12}} = {G_{23}} $=0 MPa
    基体纤维剪切${G_{12}} $=0 MPa, ${\nu _{12} }$=0
    分层${E_3} $=0 MPa, ${\nu _{13} } = {\nu _{23} }$=0, ${G_{13}} = {G_{23}} $=0 MPa
    下载: 导出CSV

    表  2  T300/BMP*的力学性能

    Table  2.   Mechanical properties of T300/BMP*

    参数数值
    弹性常数E1t/GPa100
    E2t/GPa10
    E1c/GPa100
    E2c/GPa10
    G12/GPa10
    ${\nu _{12} }$0.4
    强度Xt/MPa1000
    Xc/MPa1000
    Yt/MPa100
    Yc/MPa100
    S/MPa100
    注:表中数据为研究所试验数据模糊处理后结果。
    下载: 导出CSV

    表  3  含损伤典型件纤维断裂损伤演化过程

    Table  3.   Fiber breakage evolution of typical parts with damage

    位移/%$0\text{°}$铺层$45\text{°}$铺层
    40
    46.7
    66.7
    80
    下载: 导出CSV

    表  4  含损伤典型件基体开裂损伤演化过程

    Table  4.   Matrix cracking evolution of typical parts with damage

    位移/%$45\text{°}$铺层$90\text{°}$铺层
    33.3
    46.7
    66.7
    80
    下载: 导出CSV

    表  5  两种修复方案0°铺层纤维断裂损伤演化

    Table  5.   Fiber breakage damage evolution of 0° layer in two repaired plans

    位移/%状态预浸料修复填胶修复
    46.7损伤
    起始
    73.3到达
    承载
    极限
    86.7填胶
    修复
    结构
    破坏
    93.3预浸料
    修复
    结构
    破坏
    下载: 导出CSV

    表  6  两种修复方案90°铺层基体开裂损伤演化

    Table  6.   Matrix cracking damage evolution of 90° layer in two repaired plans

    位移/%状态预浸料修复填胶修复
    46.7损伤
    起始
    73.3到达
    承载
    极限
    86.7填胶
    修复
    结构
    破坏
    93.3预浸料
    修复
    结构
    破坏
    下载: 导出CSV

    表  7  复材机匣修复前后基体开裂损伤演化

    Table  7.   Matrix cracking damage evolution of composite bypass casing of aero-engine before and after being repaired

    损伤前损伤后预浸料修复后
    下载: 导出CSV

    表  8  复材机匣修复前后分层损伤演化

    Table  8.   Delamination damage evolution of composite bypass casing of aero-engine before and after being repaired

    损伤前损伤后预浸料修复后
    下载: 导出CSV

    表  9  复材机匣修复前后最大主应力分布

    Table  9.   The maximum principal stress distribution of composite bypass casing of aero-engine before and after being repaired

    铺层角度/(°)损伤后预浸料修复后
    0
    45
    −45
    90
    下载: 导出CSV
  • [1] 宣海军,陆晓,洪伟荣,等. 航空发动机机匣包容性研究综述[J]. 航空动力学报,2010,25(8): 1860-1870. doi: 10.13224/j.cnki.jasp.2010.08.012

    XUAN Haijun,LU Xiao,HONG Weirong,et al. Review of aero-engine case containment research[J]. Journal of Aerospace Power,2010,25(8): 1860-1870. (in Chinese) doi: 10.13224/j.cnki.jasp.2010.08.012
    [2] 温卫东,崔海坡,徐颖. T300/BMP-316复合材料板冲击损伤研究[J]. 航空动力学报,2007,22(5): 749-754. doi: 10.3969/j.issn.1000-8055.2007.05.011

    WEN Weidong,CUI Haipo,XU Ying. Research on impact damage of T300/BMP-316 composite laminates[J]. Journal of Aerospace Power,2007,22(5): 749-754. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.05.011
    [3] 孔娇月, 晏冬秀, 孙凯. 复合材料胶接修理工艺过程及其影响因素[J]. 航空制造技术, 2013, 56(23/24): 114-117.KONG Jiaoyue, YAN Dongxiu, SUN Kai. Bond repair process for composites structure and influencing factor[J]. Aeronautical Manufacturing Technology, 2013, 56(23/24): 114-117. (in Chinese)
    [4] 陈先有, 崔晶. 航空复合材料结构修补技术与应用[J]. 新技术新工艺, 2007, 29(6): 74-76, 4.

    CHEN Xianyou, CUI Jing. Application of repair of the aviation composite structure[J]. New Technology and New Process, 2007, 29(6): 74-76, 4. (in Chinese)
    [5] 王亮. 浅析复合材料典型修理方法[J]. 科技经济导刊,2019,27(29): 73.

    WANG Liang. Analysis of typical repair methods of composite materials[J]. Technology and Economic Guide,2019,27(29): 73. (in Chinese)
    [6] 陈绍杰. 复合材料结构修理指南[M]. 北京: 航空工业出版社, 2001.
    [7] JONES J S, GRAVES S R. Repair techniques for celion/LARC-160 graphite/polyimide composite structures[R]. NASA-CR-3794, 1984.
    [8] HAMOUSH S, SHIVAKUMAR K, DARWISH F, et al. Defective repairs of laminated solid composites[J]. Journal of Composite Materials, 2005, 39(24): 2185-2196
    [9] ASTM (American Society for Testing Materials) Committee. Standard practice for infrared flash thermography of composite panels and repair patches used in aerospace applications: E 2582-07 [S]. West Conshohocken, US: ASTM International, 2007.
    [10] CAMINERO M A, PAVLOPOULOU S, LOPEZ-PEDROSA M, et al. Using digital image correlation techniques for damage detection on adhesively bonded composite repairs[J]. Advanced Composites Letters, 2012, 21(2): 51-57
    [11] 孟凡颢,陈绍杰,童小燕. 层压板修理设计中的参数选择问题[J]. 复合材料学报,2001,18(4): 123-127. doi: 10.3321/j.issn:1000-3851.2001.04.026

    MENG Fanhao,CHEN Shaojie,TONG Xiaoyan. Selection of the design parameters in laminate repair[J]. Acta Materiae Compositae Sinica,2001,18(4): 123-127. (in Chinese) doi: 10.3321/j.issn:1000-3851.2001.04.026
    [12] 聂恒昌,谭日明,郭霞,等. 复合材料层合板机械连接修理拉伸性能[J]. 北京航空航天大学学报,2016,42(2): 318-327. doi: 10.13700/j.bh.1001-5965.2015.0116

    NIE Hengchang,TAN Riming,GUO Xia,et al. Tensile performances of mechanically fastened repairs of composite laminates[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(2): 318-327. (in Chinese) doi: 10.13700/j.bh.1001-5965.2015.0116
    [13] 林国伟, 陈普会. 胶接修补复合材料层合板失效分析的PDA-CZM方法[J]. 航空学报, 2009, 30(10): 1877-1882.

    LIN Guowei, CHEN Puhui. PDA-CZM method for failure analysis of bonded repair of composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1877-1882. (in Chinese)
    [14] CHANG F,CHANG K. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials,1987,21(9): 834-855. doi: 10.1177/002199838702100904
    [15] CHANG F,LESSARD L B. Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: Part Ⅰ analysis[J]. Journal of Composite Materials,1991,25(1): 2-43. doi: 10.1177/002199839102500101
    [16] TAN S C. A progressive failure model for composite laminates containing openings[J]. Journal of Composite Materials,1991,25(5): 556-577. doi: 10.1177/002199839102500505
    [17] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47(2): 329-335. doi: 10.1115/1.3153664
    [18] HASHIN Z,ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials,1973,7(4): 448-464. doi: 10.1177/002199837300700404
    [19] 张龙,程俊,邱荣凯,等. 基于三维通用单胞方法的平纹编织复合材料多尺度损伤模拟方法[J]. 航空动力学报,2020,35(11): 2275-2283. doi: 10.13224/j.cnki.jasp.2020.11.004

    ZHANG Long,CHENG Jun,QIU Rongkai,et al. Multiscale damage simulation of plain weave composites based on 3D general method of cells[J]. Journal of Aerospace Power,2020,35(11): 2275-2283. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.11.004
    [20] 蒲瑞刚. 某发动机后机匣的低循环疲劳寿命试验研究[J]. 航空动力学报,1986,1(1): 11-14. doi: 10.13224/j.cnki.jasp.1986.01.003

    PU Ruigang. Low cycle fatigue life testing research of an aeroengine case[J]. Journal of Aerospace Power,1986,1(1): 11-14. (in Chinese) doi: 10.13224/j.cnki.jasp.1986.01.003
  • 加载中
图(9) / 表(9)
计量
  • 文章访问数:  228
  • HTML浏览量:  40
  • PDF量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-27
  • 网络出版日期:  2023-02-07

目录

    /

    返回文章
    返回