Strength analysis of composite bypass casing of aero-engine in adhesive bonded repair
-
摘要:
航空发动机结构复材化是发动机减轻质量的主要途径。针对复合材料外涵机匣服役后的损伤特点,选用胶接修复工艺进行机匣修补。研究了不同胶接修复方法的修复效果和适用范围。基于三维渐进损伤方法,使用Abaqus软件建立了复合材料外涵机匣典型件胶接修复模型,对机匣危险区域损伤孔边和翻边处模拟了复合材料损伤的产生和演化,预测了使用填胶修复和预浸料修复的典型件模型静拉伸强度和实际机匣模型的静压缩强度。结果表明:损伤深度不超过厚度的10%时采用填胶修复以恢复气动外形,损伤深于厚度的10%至贯穿时预浸料修复能同时恢复机匣的强度和刚度。
Abstract:The application of composite materials is the main way to reduce aero-engine mass. Adhesive bonded repair was used to repair the damage of composite bypass casing of aero-engine, which was caused by different load cases and environmental conditions. A finite element model based on three-dimensional progressive damage method was constructed by Abaqus for the composite bypass casing of aero-engine of adhesive bonded repair, which simulated the propagation and evolution of composite material damage near holes and flanges, and predicted the static tensile and compression strength of resin-injection repair and scarf repair. Results showed that resin-injection was applied to repair the aerodynamic shape when the damage did not exceed 10% of the thickness while scarf repair was used to regain the static strength when the damage exceeded 10% of the thickness to penetration.
-
Key words:
- adhesive bonded repair /
- composite /
- bypass casing of aero-engine /
- progressive damage method /
- strength
-
表 1 材料属性折减方案
Table 1. Material property reduction plan
失效模式 折减规则 纤维拉伸 ${E}_{1}={E}_{2}={E}_{3}$=0 MPa, ${\nu }_{12}={\nu }_{13}={\nu }_{23}$=0, $G_{12}={G}_{13}={G}_{23}$=0 MPa 基体开裂 ${E_2} $=0 MPa, ${G_{12}} = {G_{23}} $=0 MPa 基体纤维剪切 ${G_{12}} $=0 MPa, ${\nu _{12} }$=0 分层 ${E_3} $=0 MPa, ${\nu _{13} } = {\nu _{23} }$=0, ${G_{13}} = {G_{23}} $=0 MPa 表 2 T300/BMP*的力学性能
Table 2. Mechanical properties of T300/BMP*
参数 数值 弹性常数 E1t/GPa 100 E2t/GPa 10 E1c/GPa 100 E2c/GPa 10 G12/GPa 10 ${\nu _{12} }$ 0.4 强度 Xt/MPa 1000 Xc/MPa 1000 Yt/MPa 100 Yc/MPa 100 S/MPa 100 注:表中数据为研究所试验数据模糊处理后结果。 表 3 含损伤典型件纤维断裂损伤演化过程
Table 3. Fiber breakage evolution of typical parts with damage
位移/% $0\text{°}$铺层 $45\text{°}$铺层 40 46.7 66.7 80 表 4 含损伤典型件基体开裂损伤演化过程
Table 4. Matrix cracking evolution of typical parts with damage
位移/% $45\text{°}$铺层 $90\text{°}$铺层 33.3 46.7 66.7 80 表 5 两种修复方案0°铺层纤维断裂损伤演化
Table 5. Fiber breakage damage evolution of 0° layer in two repaired plans
位移/% 状态 预浸料修复 填胶修复 46.7 损伤
起始73.3 到达
承载
极限86.7 填胶
修复
结构
破坏93.3 预浸料
修复
结构
破坏表 6 两种修复方案90°铺层基体开裂损伤演化
Table 6. Matrix cracking damage evolution of 90° layer in two repaired plans
位移/% 状态 预浸料修复 填胶修复 46.7 损伤
起始73.3 到达
承载
极限86.7 填胶
修复
结构
破坏93.3 预浸料
修复
结构
破坏表 7 复材机匣修复前后基体开裂损伤演化
Table 7. Matrix cracking damage evolution of composite bypass casing of aero-engine before and after being repaired
损伤前 损伤后 预浸料修复后 表 8 复材机匣修复前后分层损伤演化
Table 8. Delamination damage evolution of composite bypass casing of aero-engine before and after being repaired
损伤前 损伤后 预浸料修复后 表 9 复材机匣修复前后最大主应力分布
Table 9. The maximum principal stress distribution of composite bypass casing of aero-engine before and after being repaired
铺层角度/(°) 损伤后 预浸料修复后 0 45 −45 90 -
[1] 宣海军,陆晓,洪伟荣,等. 航空发动机机匣包容性研究综述[J]. 航空动力学报,2010,25(8): 1860-1870. doi: 10.13224/j.cnki.jasp.2010.08.012XUAN Haijun,LU Xiao,HONG Weirong,et al. Review of aero-engine case containment research[J]. Journal of Aerospace Power,2010,25(8): 1860-1870. (in Chinese) doi: 10.13224/j.cnki.jasp.2010.08.012 [2] 温卫东,崔海坡,徐颖. T300/BMP-316复合材料板冲击损伤研究[J]. 航空动力学报,2007,22(5): 749-754. doi: 10.3969/j.issn.1000-8055.2007.05.011WEN Weidong,CUI Haipo,XU Ying. Research on impact damage of T300/BMP-316 composite laminates[J]. Journal of Aerospace Power,2007,22(5): 749-754. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.05.011 [3] 孔娇月, 晏冬秀, 孙凯. 复合材料胶接修理工艺过程及其影响因素[J]. 航空制造技术, 2013, 56(23/24): 114-117.KONG Jiaoyue, YAN Dongxiu, SUN Kai. Bond repair process for composites structure and influencing factor[J]. Aeronautical Manufacturing Technology, 2013, 56(23/24): 114-117. (in Chinese) [4] 陈先有, 崔晶. 航空复合材料结构修补技术与应用[J]. 新技术新工艺, 2007, 29(6): 74-76, 4.CHEN Xianyou, CUI Jing. Application of repair of the aviation composite structure[J]. New Technology and New Process, 2007, 29(6): 74-76, 4. (in Chinese) [5] 王亮. 浅析复合材料典型修理方法[J]. 科技经济导刊,2019,27(29): 73.WANG Liang. Analysis of typical repair methods of composite materials[J]. Technology and Economic Guide,2019,27(29): 73. (in Chinese) [6] 陈绍杰. 复合材料结构修理指南[M]. 北京: 航空工业出版社, 2001. [7] JONES J S, GRAVES S R. Repair techniques for celion/LARC-160 graphite/polyimide composite structures[R]. NASA-CR-3794, 1984. [8] HAMOUSH S, SHIVAKUMAR K, DARWISH F, et al. Defective repairs of laminated solid composites[J]. Journal of Composite Materials, 2005, 39(24): 2185-2196 [9] ASTM (American Society for Testing Materials) Committee. Standard practice for infrared flash thermography of composite panels and repair patches used in aerospace applications: E 2582-07 [S]. West Conshohocken, US: ASTM International, 2007. [10] CAMINERO M A, PAVLOPOULOU S, LOPEZ-PEDROSA M, et al. Using digital image correlation techniques for damage detection on adhesively bonded composite repairs[J]. Advanced Composites Letters, 2012, 21(2): 51-57 [11] 孟凡颢,陈绍杰,童小燕. 层压板修理设计中的参数选择问题[J]. 复合材料学报,2001,18(4): 123-127. doi: 10.3321/j.issn:1000-3851.2001.04.026MENG Fanhao,CHEN Shaojie,TONG Xiaoyan. Selection of the design parameters in laminate repair[J]. Acta Materiae Compositae Sinica,2001,18(4): 123-127. (in Chinese) doi: 10.3321/j.issn:1000-3851.2001.04.026 [12] 聂恒昌,谭日明,郭霞,等. 复合材料层合板机械连接修理拉伸性能[J]. 北京航空航天大学学报,2016,42(2): 318-327. doi: 10.13700/j.bh.1001-5965.2015.0116NIE Hengchang,TAN Riming,GUO Xia,et al. Tensile performances of mechanically fastened repairs of composite laminates[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(2): 318-327. (in Chinese) doi: 10.13700/j.bh.1001-5965.2015.0116 [13] 林国伟, 陈普会. 胶接修补复合材料层合板失效分析的PDA-CZM方法[J]. 航空学报, 2009, 30(10): 1877-1882.LIN Guowei, CHEN Puhui. PDA-CZM method for failure analysis of bonded repair of composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1877-1882. (in Chinese) [14] CHANG F,CHANG K. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials,1987,21(9): 834-855. doi: 10.1177/002199838702100904 [15] CHANG F,LESSARD L B. Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: Part Ⅰ analysis[J]. Journal of Composite Materials,1991,25(1): 2-43. doi: 10.1177/002199839102500101 [16] TAN S C. A progressive failure model for composite laminates containing openings[J]. Journal of Composite Materials,1991,25(5): 556-577. doi: 10.1177/002199839102500505 [17] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47(2): 329-335. doi: 10.1115/1.3153664 [18] HASHIN Z,ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials,1973,7(4): 448-464. doi: 10.1177/002199837300700404 [19] 张龙,程俊,邱荣凯,等. 基于三维通用单胞方法的平纹编织复合材料多尺度损伤模拟方法[J]. 航空动力学报,2020,35(11): 2275-2283. doi: 10.13224/j.cnki.jasp.2020.11.004ZHANG Long,CHENG Jun,QIU Rongkai,et al. Multiscale damage simulation of plain weave composites based on 3D general method of cells[J]. Journal of Aerospace Power,2020,35(11): 2275-2283. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.11.004 [20] 蒲瑞刚. 某发动机后机匣的低循环疲劳寿命试验研究[J]. 航空动力学报,1986,1(1): 11-14. doi: 10.13224/j.cnki.jasp.1986.01.003PU Ruigang. Low cycle fatigue life testing research of an aeroengine case[J]. Journal of Aerospace Power,1986,1(1): 11-14. (in Chinese) doi: 10.13224/j.cnki.jasp.1986.01.003