留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RP-3航空煤油/O2的氧化与着火特性试验

张鑫炜 曾文 胡斌 殷阁媛 张英佳 马宏宇

张鑫炜, 曾文, 胡斌, 等. RP-3航空煤油/O2的氧化与着火特性试验[J]. 航空动力学报, 2024, 39(5):20220381 doi: 10.13224/j.cnki.jasp.20220381
引用本文: 张鑫炜, 曾文, 胡斌, 等. RP-3航空煤油/O2的氧化与着火特性试验[J]. 航空动力学报, 2024, 39(5):20220381 doi: 10.13224/j.cnki.jasp.20220381
ZHANG Xinwei, ZENG Wen, HU Bin, et al. Experiment on the oxidation and ignition delay characteristics of RP-3 kerosene/oxygen[J]. Journal of Aerospace Power, 2024, 39(5):20220381 doi: 10.13224/j.cnki.jasp.20220381
Citation: ZHANG Xinwei, ZENG Wen, HU Bin, et al. Experiment on the oxidation and ignition delay characteristics of RP-3 kerosene/oxygen[J]. Journal of Aerospace Power, 2024, 39(5):20220381 doi: 10.13224/j.cnki.jasp.20220381

RP-3航空煤油/O2的氧化与着火特性试验

doi: 10.13224/j.cnki.jasp.20220381
基金项目: 国家科技重大专项(2017-Ⅲ-0006-0031)
详细信息
    作者简介:

    张鑫炜(1998-),女,硕士生,主要从事碳氢燃料基础燃烧特性研究。E-mail:779692897@qq.com

    通讯作者:

    曾文(1977-),男,教授,博士,主要从事发动机先进燃烧技术研究。E-mail:zengwen928@sohu.com

  • 中图分类号: V231.2;TK401

Experiment on the oxidation and ignition delay characteristics of RP-3 kerosene/oxygen

  • 摘要:

    在流动管反应器中对当量比分别为0.5、1.0、2.0、温度范围为550~1200 K、压力分别为0.1、3.0 MPa条件下RP-3航空煤油/O2的氧化特性进行了试验测试。结果表明:当量比由0.5增加到2.0时,RP-3航空煤油/O2氧化过程中各组分生成的起始温度以及出现摩尔分数峰值时的温度均升高;压力由0.1 MPa升高到3.0 MPa时,RP-3航空煤油/O2氧化过程中各组分生成的起始温度以及出现摩尔分数峰值时的温度均降低,烷烃的摩尔分数峰值升高,而烯烃的摩尔分数峰值则降低。同时,在激波管中对当量比分别为0.8、3.5、压力分别为0.2、1.0、5.0 MPa、温度范围为950~1500 K条件下RP-3航空煤油/O2的着火延迟特性进行了试验测试。结果表明,RP-3航空煤油/O2的着火延迟时间随压力与温度的升高、当量比由3.5减小到0.8时逐渐缩短。

     

  • 图 1  高压流动管反应器试验测试系统

    Figure 1.  Experimental system of the high pressure flow tube reactor

    图 2  高压激波管试验测试系统

    Figure 2.  Experimental system of the high pressure shock tube

    图 3  流动管反应器内轴向温度分布曲线

    Figure 3.  Axial temperature distribution curve in flow tube reactor

    图 4  当量比对主要组分摩尔分数随温度变化趋势的影响(p=0.1 MPa)

    Figure 4.  Effect of equivalence ratio on the variation trend of the main species mole fraction with temperature (p=0.1 MPa)

    图 5  压力对主要组分摩尔分数随温度变化趋势的影响(ϕ=2.0)

    Figure 5.  Effect of pressure on the variation trend of the main species mole fraction with temperature (ϕ=2.0)

    图 6  不同着火方式的着火延迟时间定义

    Figure 6.  Definition of ignition delay time for different ignition modes

    图 7  不同工况下RP-3航空煤油/O2的着火延迟时间

    Figure 7.  Ignition delay time of RP-3 kerosene/O2 under different conditions

    表  1  氧化特性试验工况

    Table  1.   Test conditions for oxidation characteristics

    工况编号 ϕ 摩尔分数
    RP-3 O2 He
    1 0.5 0.003 0.10547 0.89153
    2 1.0 0.003 0.05273 0.94427
    3 2.0 0.003 0.02637 0.97063
    下载: 导出CSV

    表  2  着火延迟特性试验工况

    Table  2.   Test conditions for ignition delay characteristics

    工况编号 $ \phi $ 摩尔分数
    RP-3 O2 Ar
    1 0.8 0.00178 0.03822 0.96
    2 3.5 0.00676 0.03324 0.96
    下载: 导出CSV

    表  3  RP-3航空煤油/O2的着火延迟时间(ϕ=0.8)

    Table  3.   Ignition delay time of RP-3 kerosene/O2ϕ=0.8)

    p/MPaTini/K$ {\tau _{{\text{ign}}}} $/μs
    0.210815780
    10944750
    11064315
    11223673
    11473013
    11632120
    11792352
    12051651
    12371253
    1277854
    1328567
    1379324
    1.09917781
    10075706
    10086189
    10534170
    10792842
    10982455
    11321726
    11481293
    1168915
    1236643
    1267415
    1301286
    1313283
    5.09633348
    9902863
    10282150
    10541683
    1114981
    1157560
    1213339
    1262216
    下载: 导出CSV

    表  4  RP-3航空煤油/O2的着火延迟时间(ϕ=3.5)

    Table  4.   Ignition delay time of RP-3 kerosene/O2ϕ=3.5)

    p/MPaTini/K${\tau _{{\text{ign}}}} $/μs
    1.09983471
    10183673
    10743179
    11142340
    11271344
    11811311
    12081091
    1283668
    1357409
    1446209
    1520109
    5.01208363
    1274238
    1307206
    1359152
    1415110
    1440104
    下载: 导出CSV
  • [1] 南向谊,王拴虎,李平. 空气涡轮火箭发动机研究的进展及展望[J]. 火箭推进,2008,34(6): 31-35. NAN Xiangyi,WANG Shuanhu,LI Ping. Investigation on status and prospect of air turbine rocket[J]. Journal of Rocket Propulsion,2008,34(6): 31-35. (in Chinese

    NAN Xiangyi, WANG Shuanhu, LI Ping. Investigation on status and prospect of air turbine rocket[J]. Journal of Rocket Propulsion, 2008, 34(6): 31-35. (in Chinese)
    [2] THOMAS M,BOSSARD J,OSTRANDER M. Addressing emerging tactical missile propulsion challenges with the solid propellant air-turbo-rocket[R]. AIAA-2000-3309,2000.
    [3] THOMAS M,LEONARD A. Air-turbo-rocket combustion[R]. AIAA-95-0813,1995.
    [4] KAMADA T,NAKAMURA H,TEZUKA T,et al. Study on combustion and ignition characteristics of natural gas components in a micro flow reactor with a controlled temperature profile[J]. Combustion and Flame,2014,161(1): 37-48. doi: 10.1016/j.combustflame.2013.08.013
    [5] KACZMAREK D,HERZLER J,PORRAS S,et al. Plug-flow reactor and shock-tube study of the oxidation of very fuel-rich natural gas/DME/O2 mixtures[J]. Combustion and Flame,2021,225: 86-103. doi: 10.1016/j.combustflame.2020.10.004
    [6] GIMÉNEZ-LÓPEZ J,MILLERA A,BILBAO R,et al. Experimental and kinetic modeling study of the oxy-fuel oxidation of natural gas,CH4 and C2H6[J]. Fuel,2015,160: 404-412. doi: 10.1016/j.fuel.2015.07.087
    [7] BURKE S M,METCALFE W,HERBINET O,et al. An experimental and modeling study of propene oxidation: Part 1 speciation measurements in jet-stirred and flow reactors[J]. Combustion and Flame,2014,161(11): 2765-2784. doi: 10.1016/j.combustflame.2014.05.010
    [8] 郑玮琳,庞历瑶,张世杰,等. 组分变化对甲烷氧化特性影响[J]. 航空动力学报,2021,36(1): 15-24. ZHENG Weilin,PANG Liyao,ZHANG Shijie,et al. Effect of composition variance on methane oxidation characteristics[J]. Journal of Aerospace Power,2021,36(1): 15-24. (in Chinese doi: 10.13224/j.cnki.jasp.2021.01.003

    ZHENG Weilin, PANG Liyao, ZHANG Shijie, et al. Effect of composition variance on methane oxidation characteristics[J]. Journal of Aerospace Power, 2021, 36(1): 15-24. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.01.003
    [9] BURKE U,METCALFE W K,BURKE S M,et al. A detailed chemical kinetic modeling,ignition delay time and jet-stirred reactor study of methanol oxidation[J]. Combustion and Flame,2016,165: 125-136. doi: 10.1016/j.combustflame.2015.11.004
    [10] LIU Yuexi,RICHTER S,NAUMANN C,et al. Combustion study of a surrogate jet fuel[J]. Combustion and Flame,2019,202: 252-261. doi: 10.1016/j.combustflame.2019.01.022
    [11] 刘靖,胡二江,黄佐华,等. RP-3航空煤油低温氧化特性的试验与数值计算[J]. 航空动力学报,2022,37(1): 36-45. LIU Jing,HU Erjiang,HUANG Zuohua,et al. Experiment and numerical calculation on low-temperature oxidation characteristics of RP-3 aviation kerosene[J]. Journal of Aerospace Power,2022,37(1): 36-45. (in Chinese doi: 10.13224/j.cnki.jasp.20210074

    LIU Jing, HU Erjiang, HUANG Zuohua, et al. Experiment and numerical calculation on low-temperature oxidation characteristics of RP-3 aviation kerosene[J]. Journal of Aerospace Power, 2022, 37(1): 36-45. (in Chinese) doi: 10.13224/j.cnki.jasp.20210074
    [12] ZHU Yangye,LI Sijie,DAVIDSON D F,et al. Ignition delay times of conventional and alternative fuels behind reflected shock waves[J]. Proceedings of the Combustion Institute,2015,35(1): 241-248. doi: 10.1016/j.proci.2014.05.034
    [13] LI Sijie,ZHU Yangye,DAVIDSON D F,et al. Pyrolysis study of conventional and alternative fuels behind reflected shock waves[J]. Fuel,2014,132: 170-177. doi: 10.1016/j.fuel.2014.04.077
    [14] ZHANG Jiaxiang,NIU Shaodong,ZHANG Yingjia,et al. Experimental and modeling study of the auto-ignition of n-heptane/n-butanol mixtures[J]. Combustion and Flame,2013,160(1): 31-39. doi: 10.1016/j.combustflame.2012.09.006
    [15] ZHANG Yingjia,HUANG Zuohua,WEI Liangjie,et al. Experimental and modeling study on ignition delays of lean mixtures of methane,hydrogen,oxygen,and argon at elevated pressures[J]. Combustion and Flame,2012,159(3): 918-931. doi: 10.1016/j.combustflame.2011.09.010
    [16] ZHANG Changhua,LI Bin,RAO Fan,et al. A shock tube study of the autoignition characteristics of RP-3 jet fuel[J]. Proceedings of the Combustion Institute,2015,35(3): 3151-3158. doi: 10.1016/j.proci.2014.05.017
    [17] LIU Wei,QI Yunliang,ZHANG Ridong,et al. Investigation on end-gas auto-ignition and knock characteristics of iso-octane over wide thermodynamic conditions under jet ignition using a rapid compression machine[J]. Fuel,2022,313: 122665.1-122665.10.
    [18] LIU Wei,QI Yunliang,ZHANG Ridong,et al. Flame propagation and auto-ignition behavior of iso-octane across the negative temperature coefficient (NTC) region on a rapid compression machine[J]. Combustion and Flame,2022,235: 111688.1-111688. 12.
    [19] CHEN B H,LIU J Z,YAO Feng,et al. Ignition delay characteristics of RP-3 under ultra-low pressure (0.01—0.1 MPa)[J]. Combustion and Flame,2019,210: 126-133. doi: 10.1016/j.combustflame.2019.08.009
    [20] MAO Yebing,YU Liang,WU Zhiyong,et al. Experimental and kinetic modeling study of ignition characteristics of RP-3 kerosene over low-to-high temperature ranges in a heated rapid compression machine and a heated shock tube[J]. Combustion and Flame,2019,203: 157-169. doi: 10.1016/j.combustflame.2019.02.015
    [21] 刘靖,胡二江,黄佐华,等. RP-3航空煤油模拟替代燃料的着火延迟特性[J]. 推进技术,2021,42(2): 467-473. LIU Jing,HU Erjiang,HUANG Zuohua,et al. Ignition delay characteristics of a surrogate fuel for RP-3 kerosene[J]. Journal of Propulsion Technology,2021,42(2): 467-473. (in Chinese doi: 10.13675/j.cnki.tjjs.190545

    LIU Jing, HU Erjiang, HUANG Zuohua, et al. Ignition delay characteristics of a surrogate fuel for RP-3 kerosene[J]. Journal of Propulsion Technology, 2021, 42(2): 467-473. (in Chinese) doi: 10.13675/j.cnki.tjjs.190545
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  51
  • HTML浏览量:  42
  • PDF量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-28
  • 网络出版日期:  2023-11-02

目录

    /

    返回文章
    返回