留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运载火箭复杂管路随机性压力跳变机理及抑制

陈二锋 娄路亮 田原 邵业涛 周智勇

陈二锋, 娄路亮, 田原, 等. 运载火箭复杂管路随机性压力跳变机理及抑制[J]. 航空动力学报, 2022, 37(12):2762-2770 doi: 10.13224/j.cnki.jasp.20220382
引用本文: 陈二锋, 娄路亮, 田原, 等. 运载火箭复杂管路随机性压力跳变机理及抑制[J]. 航空动力学报, 2022, 37(12):2762-2770 doi: 10.13224/j.cnki.jasp.20220382
CHEN Erfeng, LOU Luliang, TIAN Yuan, et al. Mechanism and suppression of random pressure jump in complex pipeline system of launch vehicles[J]. Journal of Aerospace Power, 2022, 37(12):2762-2770 doi: 10.13224/j.cnki.jasp.20220382
Citation: CHEN Erfeng, LOU Luliang, TIAN Yuan, et al. Mechanism and suppression of random pressure jump in complex pipeline system of launch vehicles[J]. Journal of Aerospace Power, 2022, 37(12):2762-2770 doi: 10.13224/j.cnki.jasp.20220382

运载火箭复杂管路随机性压力跳变机理及抑制

doi: 10.13224/j.cnki.jasp.20220382
基金项目: 国家自然科学企业联合基金(U1937602)
详细信息
    作者简介:

    陈二锋(1980-),男,研究员,博士,主要研究方向为流体传动分析与设计。E-mail:xiaole3549@126.com

  • 中图分类号: V431

Mechanism and suppression of random pressure jump in complex pipeline system of launch vehicles

  • 摘要:

    针对3种典型的管路随机性压力跳变现象,通过仿真分析,提出管路中的直角多通结构使管内流动具有非线性的流动多解特性,在特定扰动条件下,会产生多通内的大涡结构及沿分支管的螺旋流动,引起额外的流阻,并导致管路局部压力发生跳变,从机理上复现了复杂管路内的随机性压力跳变现象;在此基础上,提出了增加导流结构/隔板结构抑制多通内大涡流动的改进方案,并针对真实管路结构,开展了管路压力跳变现象的地面复现及抑制改进试验,试验结果表明:3种直角多通结构均存在流动多解特性,增加导流结构可有效消除管路中的随机性压力跳变现象。

     

  • 图 1  典型的管路随机性压力跳变现象

    Figure 1.  Typical random pressure jump phenomena in the pipelines

    图 2  燃气发生器工作原理示意图及三通结构

    Figure 2.  Schematic diagram of working principle of gas generator and three-way pipeline

    图 3  燃气三通计算网格

    Figure 3.  Computational grid of three-way gas pipeline

    图 4  燃气三通两种典型流型

    Figure 4.  Two flow patterns in three-way pipeline

    图 5  不同软件、不同分流比燃气三通仿真结果

    Figure 5.  Three-way simulation result at different softwares and different split ratios

    图 6  燃气发生器压力脉动试车统计结果

    Figure 6.  Statistical results of pressure pulsation phenomena of gas generator’s ground testing

    图 7  二级氧输送管路示意图

    Figure 7.  Schematic diagram of two-stage liquid oxygen delivery pipeline

    图 8  输送路五通计算网格

    Figure 8.  Computational grid five-way delivery pipeline

    图 9  输送路五通的两种流型

    Figure 9.  Two flow patterns in five-way delivery pipeline

    图 10  增压管路布局

    Figure 10.  Pressurization pipeline layout

    图 11  增压管计算网格

    Figure 11.  Computational grid of pressurization pipeline

    图 12  增压管内两种流型

    Figure 12.  Two flow patterns in pressurization pipeline

    图 13  燃气发生器地面分流比试验

    Figure 13.  Ground experiment of gas generator split ratio

    图 14  燃气三通流动稳定性抑制及验证

    Figure 14.  Design improvement and verification of flow stability in three-way gas pipeline

    图 15  输送路五通流动稳定性抑制及验证

    Figure 15.  Design improvement and verification of flow stability in five-way delivery pipeline

    图 16  增压路三通流动稳定性抑制及验证

    Figure 16.  Design improvement and verification of flow stability in three-way pressurization pipeline

  • [1] 张琳,钱红卫,宣益民,等. 自转螺旋扭带管内三维流动与传热数值模拟[J]. 化工学报,2005,56(9): 1633-1638. ZHANG Lin,QIAN Hongwei,XUAN Yimin,et al. 3D numerical simulation of fluid flow and heat transfer in self-rotating twisted-tape-inserted tube[J]. Journal of Chemical Industry and Engineering,2005,56(9): 1633-1638. (in Chinese doi: 10.3321/j.issn:0438-1157.2005.09.006
    [2] HORII K,MURATA T,TAKARADA M,et al. A study of spiral flow: phenomenon in a cylindrical pipe[J]. Transactions of the Japan Society for Aeronautical and Space Sciences,1985,28: 123-131.
    [3] HORII K,MURATA T,TAKARADA M,et al. A study of spiral flow: vortex phenomenon in a specially shaped bend[J]. Transactions of the Japan Society for Aeronautical and Space Sciences,1988,31: 71-78.
    [4] 熊鳌魁,魏庆鼎. 一种强螺旋流现象的试验研究[J]. 流体力学试验与测量,1999,13(4): 8-13. XIONG Aokui,WEI Qingding. Experiment study on a sort of strong swirling flow[J]. Experiments and Measurements in Fluid Mechanics,1999,13(4): 8-13. (in Chinese
    [5] 熊鳌魁,魏庆鼎. 一种强螺旋流现象的数值试验研究[J]. 空气动力学学报,2001,19(1): 83-90. XIONG Aokui,WEI Qingding. Numerical studies on a sort of strongly swirling flows[J]. Acta Aerodynamics Sinaca,2001,19(1): 83-90. (in Chinese doi: 10.3969/j.issn.0258-1825.2001.01.012
    [6] 吴金星,王超,王明强,等. 内置扭带管内湍流流动与传热数值模拟[J]. 郑州大学学报(工学版),2017,38(3): 10-14. WU Jinxing,WANG Chao,WANG Mingqiang,et al. Numerical Simulation of turbulent fluid flow and heat transfer in a circular tube with twisted tape inserts[J]. Journal of Zhengzhou University (Engineering Science),2017,38(3): 10-14. (in Chinese doi: 10.13705/j.issn.1671-6833.2016.06.018
    [7] 郭永辉,刘朝. 圆管螺旋流的流动与传热数值模拟[J]. 工业加热,2007,36(3): 27-31. GUO Yonghui,LIU Chao. Numerical simulation of fluid flow and heat transfer in the Spiral flow in pipe[J]. Industrial Heating,2007,36(3): 27-31. (in Chinese doi: 10.3969/j.issn.1002-1639.2007.03.008
    [8] 梁俊,饶永超,王树立,等. 天然气水合物管道螺旋流动与传热数值模拟[J]. 油气田地面工程,2018,37(2): 6-11. LIANG Jun,RAO Yongchao,WANG Shuli,et al. Numerical simulation of spiral flow and heat transfer in natural gas hydrate pipe[J]. Oil-Gasfield Surface Engineering,2018,37(2): 6-11. (in Chinese
    [9] YAKHOT V,ORSZAG S A. Renormalization group analysis of turbulence 1: basic theory[J]. Journal of Scientific Computing,1996(1): 1-15.
    [10] XIE F S,XIA S Q,CHEN E F,et al. Numerical simulation on instability flow behaviors of liquid oxygen in a feeding pipeline with a five-way spherical cavity[J]. Energies,2020,13(4): 926-947. doi: 10.3390/en13040926
    [11] XIE F S,LI Y Z,WANG X B,et al. Experimental investigation of abnormal pressure drop in branch feed lines with a five-port spherical cavity in liquid oxygen engines[J]. Cryogenics,2019,104: 102994-103005. doi: 10.1016/j.cryogenics.2019.102994
    [12] XIE F S,MAO H W,LI Y Z,et al. Experimental investigation of pressure drop of feeding pipes of liquid oxygen in a five-way distribution cavity under different working states[J]. International Journal of Heat and Mass Transfer,2020,163: 120458-120469. doi: 10.1016/j.ijheatmasstransfer.2020.120458
    [13] 孙善秀,叶超,范稀木,等. 复杂管路压力跳变的螺旋流解释[J]. 导弹与航天运载技术,2019,5(2): 31-37. SUN Shanxiu,YE Chao,FAN Ximu,et al. Spiral flow explanation of internal flow pressure jump in complex pipeline[J]. Missiles and Space Vehicles,2019,5(2): 31-37. (in Chinese doi: 10.7654/j.issn.1004-7182.20190207
    [14] KIRIS C C,KWAK D,CHAN W,et al. High-fidelity simulations of unsteady flow through turbopumps and flowliners[J]. Computers and Fluids,2008,37(5): 536-546. doi: 10.1016/j.compfluid.2007.07.010
    [15] HARRIS CE, CRAGG CH, RAJU IS, et al. Orbiter LH2 feedline flow liner cracking problem[R]. Hampton, US: NASA Langley Research Center, 2005.
    [16] KOBAYASHI K, OOWADA Y, ARITA M, et al. Development status of H-IIB launch vehicle propulsion system[R]. AIAA-2007- 5451, 2007.
    [17] CHO IH, JUNG TK, JUNG YS, et al. Development of Korea sounding rocket: Ⅲ propulsion feeding system[R]. AIAA-2003- 4899, 2003.
    [18] SEKITA R, KUBOTA I. Flow analyses and test results for the H-IIA first stage LH2 feedline[R]. AIAA-2002-3844, 2002.
    [19] VU B, GARCIA R. Flow analysis of X-34 main propulsion system feedlines[R]. AIAA-2000-3722, 2000.
  • 加载中
图(17)
计量
  • 文章访问数:  175
  • HTML浏览量:  93
  • PDF量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-29
  • 网络出版日期:  2022-11-07

目录

    /

    返回文章
    返回