留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缝式机匣处理对对转压气机最先失速级的影响

王磊 高丽敏 茅晓晨 郭彦超

王磊, 高丽敏, 茅晓晨, 等. 缝式机匣处理对对转压气机最先失速级的影响[J]. 航空动力学报, 2024, 39(6):20220392 doi: 10.13224/j.cnki.jasp.20220392
引用本文: 王磊, 高丽敏, 茅晓晨, 等. 缝式机匣处理对对转压气机最先失速级的影响[J]. 航空动力学报, 2024, 39(6):20220392 doi: 10.13224/j.cnki.jasp.20220392
WANG Lei, GAO Limin, MAO Xiaochen, et al. Effect of slot casing treatment on first stall stage of counter-rotating compressor[J]. Journal of Aerospace Power, 2024, 39(6):20220392 doi: 10.13224/j.cnki.jasp.20220392
Citation: WANG Lei, GAO Limin, MAO Xiaochen, et al. Effect of slot casing treatment on first stall stage of counter-rotating compressor[J]. Journal of Aerospace Power, 2024, 39(6):20220392 doi: 10.13224/j.cnki.jasp.20220392

缝式机匣处理对对转压气机最先失速级的影响

doi: 10.13224/j.cnki.jasp.20220392
基金项目: 国家科技重大专项(J2019-Ⅱ-0016-0037); 国家自然科学基金重大专项(51790512); 国家自然科学基金(52106057)
详细信息
    作者简介:

    王磊(1997-),男,博士,研究方向为叶轮机械气动热力学。E-mail:wanglei304@mail.nwpu.edu.cn

    通讯作者:

    高丽敏(1973-),女,教授、博士生导师,博士,研究方向为叶轮机械气动热力学。E-mail:gaolm@nwpu.edu.cn

  • 中图分类号: V231.3

Effect of slot casing treatment on first stall stage of counter-rotating compressor

  • 摘要:

    为探究缝式机匣处理对对转压气机最先失速级的影响规律,以双级对转压气机为研究对象,采用数值模拟的方法,开展了缝式机匣处理对对转压气机最先失速级的影响研究。研究表明:缝式机匣处理下该对转压气机的失速初始扰动类型仍为突尖型失速,机匣处理前移压气机的最先失速级由转子R2转换为转子R1,而机匣处理后移未改变该压气机的失速级。机匣处理前移抑制了转子R2前缘溢流的发生,降低了叶片通道内的非定常脉动强度,而转子R1在近失速工况下叶片前缘溢流加剧,主流和泄漏流的交界面被推出叶片通道,同时叶片通道内的非定常脉动强度增大,最终使得转子R1首先进入失速状态;机匣处理向转子R2下游移动,难以抑制前缘溢流的发生,虽然此时转子R1也出现了前缘溢流现象,但转子R2前缘溢流更剧烈,主流和泄漏流交界面的位置更远离叶片前缘,更容易使压气机发生失速。

     

  • 图 1  双级对转压气机实验台视图

    Figure 1.  Views of the two-stages counter-rotating axial compressor

    图 2  缝式机匣处理几何示意图

    Figure 2.  Schematic diagram of slot casing treatment

    图 3  转子叶片网格示意图

    Figure 3.  Schematic diagram of rotor blade grid

    图 4  机匣处理网格示意图

    Figure 4.  Schematic diagram of casing treatment grid

    图 5  实验和数值计算压气机总性能对比

    Figure 5.  Overall performance comparison between numerical and experimental results of solid casing

    图 6  机匣处理前移下压气机总特性对比

    Figure 6.  Comparison the overall performance of compressor with forward movement of the casing treatment

    图 7  机匣处理后移对转压气机总特性对比

    Figure 7.  Comparison the overall performance of compressor with backward movement of the casing treatment

    图 8  转子99%叶高熵及流线分布

    Figure 8.  Distribution of entropy and streamlines of 99% blade span

    图 9  99%叶高的相对马赫数分布

    Figure 9.  Mach number distribution at 99% blade span

    图 10  近失速工况下转子99%叶高熵及流线分布

    Figure 10.  Distribution of entropy and streamlines of 99% blade span at near-stall condition

    图 11  近失速工况下转子叶尖间隙泄漏流分布(时均值)

    Figure 11.  Distribution of blade tip leakage flow under near-stall condition (time-average)

    图 12  转子叶顶间隙泄漏流轴向动量沿轴向弦长的分布

    Figure 12.  Distribution of the average axial momentum of the tip leakage flow of the rotor blades

    图 13  转子间隙内泄漏流与轴向方向的夹角沿轴向弦长的分布

    Figure 13.  Distribution of the angle of the leakage flow in the rotor gap with respect to the axial direction along the axial chord length

    图 14  对转压气机中泄漏流流动示意图

    Figure 14.  Schematic diagram of tip leakg flow in a counter-rotating compressor

    图 15  近失速工况99%叶高的相对马赫数分布(70T/80)

    Figure 15.  Mach number distribution at 99% blade span of rotors at near-stall point (70T/80)

    图 16  转子99%叶高表面静压分布

    Figure 16.  Static pressure distribution at 99% blade span

    图 17  近失速工况下99%叶高的Su分布

    Figure 17.  Su distribution of 99% blade span at near stall point

    图 18  近失速工况下转子99%叶高熵及流线分布

    Figure 18.  Distribution of entropy and streamlines of 99% blade span at near-stall condition

    图 19  转子叶顶间隙泄漏流轴向动量沿轴向弦长的分布

    Figure 19.  Distribution of the average axial momentum of the tip leakage flow of the rotor blades

    图 20  转子间隙内泄漏流与轴向方向的夹角沿轴向弦长的分布

    Figure 20.  Distribution of the angle of the leakage flow in the rotor gap with respect to the axial direction along the axial chord length

    表  1  转子主要设计参数

    Table  1.   Main design parameters of the rotors

    设计参数 转子1(R1) 转子2(R2)
    转速N/(r/min) 8000 −8000
    叶片数n 19 20
    叶顶间隙τ/mm 0.5 0.5
    叶尖弦长C/mm 0.0832 0.0769
    叶尖速度/(m/s) 167.6 167.6
    进口轮毂比 0.485 0.641
    下载: 导出CSV

    表  2  缝式机匣处理几何参数

    Table  2.   Geometry parameters of axial slot casing treatment

    参数 缝式机匣处理方案
    ASCT1 ASCT2 ASCT3 ASCT4
    缝长(L/Ca)/% 100 100 100 100
    缝宽W/mm 7.4 7.4 7.4 7.4
    缝深D/mm 12 12 12 12
    单通道缝数 6 6 6 6
    中心偏移度 0 0.21 0.42 −0.21
    W/W1 2/1 2/1 2/1 2/1
    下载: 导出CSV

    表  3  机匣处理扩稳效果评估

    Table  3.   Evaluation of stability expansion effect of casing treatment

    机匣处理方案 ΔSMI/% ΔPEI/%
    ASCT1 6.23 −2.15
    ASCT2 6.15 −1.82
    ASCT3 6.2 −0.99
    ASCT4 5.51 −1.14
    下载: 导出CSV
  • [1] JOLY M,VERSTRAETE T,PANIAGUA G. Full design of a highly loaded and compact contra-rotating fan using multidisciplinary evolutionary optimization: ASME Paper GT2013-94433 [R]. San Antonio,US: American Society of Mechanical Engineers,2013.
    [2] SHARMA P B,JAIN Y P,PUNDHIR D S. A study of some factors affecting the performance of a contra-rotating axial compressor stage[J]. Proceedings of the Institution of Mechanical Engineers,Part A: Power and Process Engineering,1988,202(1): 15-21.
    [3] SHARMA P B,JAIN Y P,JHA N K,et al. Stall behavior of a contra-rotating axial compressor stages: ISABE 85-7087 [R]. Beijing: the 7th ISABE Conference,1985.
    [4] 高丽敏,苗芳,李晓军,等. 对转压气机转速比对最先失速级的影响[J]. 应用力学学报,2013,30(6): 845-848,951. GAO Limin,MIAO Fang,LI Xiaojun,et al. Effect of rotating speed ratio on the first rotating stall stage in contra-rotating compressor[J]. Chinese Journal of Applied Mechanics,2013,30(6): 845-848,951. (in Chinese

    GAO Limin, MIAO Fang, LI Xiaojun, et al. Effect of rotating speed ratio on the first rotating stall stage in contra-rotating compressor[J]. Chinese Journal of Applied Mechanics, 2013, 30(6): 845-848, 951. (in Chinese)
    [5] GAO L M,LI X J,FENG X D,et al. The effect of tip clearance on the performance of contra-rotating compressor: ASME Paper GT2012-68801 [R]. Copenhagen,Denmark: American Society of Mechanical Engineers,2012.
    [6] MAO Xiaochen,LIU Bo. Numerical investigation of tip clearance size effect on the performance and tip leakage flow in a dual-stage counter-rotating axial compressor[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2017,231(3): 474-484. doi: 10.1177/0954410016638878
    [7] 王昊,薛飞,岳少原,等. 对转压气机变转速比失速类型试验[J]. 航空学报,2022,43(7): 125596. WANG Hao,XUE Fei,YUE Shaoyuan,et al. Test on stall types of contra-rotating compressor with variable speed ratios[J]. Acta Aeronautica et Astronautica Sinica,2022,43(7): 125596. (in Chinese

    WANG Hao, XUE Fei, YUE Shaoyuan, et al. Test on stall types of contra-rotating compressor with variable speed ratios[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125596. (in Chinese)
    [8] MISTRY C,PRADEEP A M. Effect of variation in axial spacing and rotor speed combinations on the performance of a high aspect ratio contra-rotating axial fan stage[J]. Proceedings of the Institution of Mechanical Engineers: Part A Journal of Power and Energy,2013,227(2): 138-146. doi: 10.1177/0957650912467453
    [9] WILKE I,KAU H P. A numerical investigation of the flow mechanisms in a HPC front stage with axial slots: ASME Paper GT2003-38481 [R]. Atlanta,US: American Society of Mechanical Engineers,2009.
    [10] BA Dun,ZHANG Qianfeng,DU Juan,et al. Design optimization of axial slot casing treatment in a highly-loaded mixed-flow compressor[J]. Aerospace Science and Technology,2020,107: 106262. doi: 10.1016/j.ast.2020.106262
    [11] MU¨LLER M W,SCHIFFER H P,VOGES M,et al. Investigation of passage flow features in a transonic compressor rotor with casing treatments: ASME Paper GT2011-45364 [R]. Vancouver,Canada: American Society of Mechanical Engineers,2012.
    [12] WILKE I,KAU H P,BRIGNOLE G. Numerically aided design of a high-efficient casing treatment for a transonic compressor: ASME Paper GT2005-68993 [R]. Reno,US: American Society of Mechanical Engineers,2008.
    [13] ZHANG Haoguang,ZHANG Xudong,WU Yanhui,et al. Flow mechanism of affecting an axial flow compressor performance and stability with cross-blade slot casing treatments[J]. Proceedings of the Institution of Mechanical Engineers: Part A Journal of Power and Energy,2019,233(1): 17-36. doi: 10.1177/0957650918772620
    [14] 高丽敏,王磊,茅晓晨,等. 缝式机匣处理对对转压气机的扩稳机理[J]. 航空动力学报,2023,38(3): 640-654. GAO Limin,WANG Lei,MAO Xiaochen,et al. Mechanism of stability improvement with slot casing treatment in counter-rotating compressor[J]. Journal of Aerospace Power,2023,38(3): 640-654. (in Chinese

    GAO Limin, WANG Lei, MAO Xiaochen, et al. Mechanism of stability improvement with slot casing treatment in counter-rotating compressor[J]. Journal of Aerospace Power, 2023, 38(3): 640-654. (in Chinese)
    [15] LIM B J,PARK T C,KWON S. Stall inception and warning in a single-stage transonic axial compressor with axial skewed slot casing treatment[J]. Journal of Mechanical Science and Technology,2014,28(9): 3569-3581. doi: 10.1007/s12206-014-0818-7
    [16] ZHANG Sha,CHU Wuli,YANG Jibo. Effect of axial short slot casing treatment and its center deviation on stability of a transonic axial flow compressor: ASME Paper GT2020-14588 [R]. London,UK: American Society of Mechanical Engineers,2020.
    [17] LIU Le,LI Jichao,NAN Xi,et al. The stall inceptions in an axial compressor with single circumferential groove casing treatment at different axial locations[J]. Aerospace Science and Technology,2016,59: 145-154. doi: 10.1016/j.ast.2016.10.014
    [18] HOUGHTON T,DAY I. Stability enhancement by casing grooves: the importance of stall inception mechanism and solidity: ASME Paper GT2010-22284[R]. Glasgow,UK: American Society of Mechanical Engineers,2010.
    [19] LI Jichao,DU Juan,LI Fan,et al. Stability enhancement using a new hybrid casing treatment in an axial flow compressor[J]. Aerospace Science and Technology,2019,85: 305-319. doi: 10.1016/j.ast.2018.12.018
    [20] SUN Dakun,LI Jia,XU Ruize,et al. Effects of the foam metal casing treatment on aerodynamic stability and aerocoustic noise in an axial flow compressor[J]. Aerospace Science and Technology,2021,115: 106793. doi: 10.1016/j.ast.2021.106793
    [21] BRANDSTETTER C,WARTZEK F,WERNER J,et al. Unsteady measurements of periodic effects in a transonic compressor with casing treatments: ASME Paper GT2015-42394[R]. Montreal,Canada: American Society of Mechanical Engineers,2015.
    [22] WANG Wei,CHU Wuli,ZHANG Haoguang,et al. Experimental study of self-recirculating casing treatment in a subsonic axial flow compressor[J]. Proceedings of the Institution of Mechanical Engineers,Part A: Journal of Power and Energy,2016,230(8): 805-818.
    [23] DU Juan,KAUTH F,LI Jichao,et al. Experimental study on the influence of casing treatment on near-stall unsteady behavior of a mixed-flow compressor: ASME Paper GT2019-92034[R]. Phoenix,US: American Society of Mechanical Engineers,2019.
    [24] STRAZISAR A J,BRIGHT M M,THORP S,et al. Compressor stall control through endwall recirculation: ASME Paper GT2004-54295[R]. Vienna,Austria: American Society of Mechanical Engineers,2004.
    [25] LI Jichao,DU Juan,LI Zhiyuan,et al. Stability enhancement with self-recirculating injection in axial flow compressor[J]. Journal of Turbomachinery,2018,140(7): 071001. doi: 10.1115/1.4039806
    [26] LI Jichao,LIU Yang,DU Juan,et al. Implementation of stability-enhancement with tip air injection in a multi-stage axial flow compressor[J]. Aerospace Science and Technology,2021,113: 106646. doi: 10.1016/j.ast.2021.106646
    [27] 王维,楚武利,张皓光. 高负荷两级轴流压气机耦合型机匣处理的设计研究[J]. 推进技术,2017,38(10): 2365-2373. WANG Wei,CHU Wuli,ZHANG Haoguang. Study of design of a coupled casing treatment for a two-stage high-loaded axial flow compressor[J]. Journal of Propulsion Technology,2017,38(10): 2365-2373. (in Chinese

    WANG Wei, CHU Wuli, ZHANG Haoguang. Study of design of a coupled casing treatment for a two-stage high-loaded axial flow compressor[J]. Journal of Propulsion Technology, 2017, 38(10): 2365-2373. (in Chinese)
    [28] MEYER R,KNOBLOCH K,LINDEN J. Hot-wire measurements in a high speed counter rotating turbo fan rig: ASME Paper GT2010-22569 [R]. Houston,US: American Society of Mechanical Engineers,2010.
    [29] 高丽敏,苗芳,李瑞宇,等. 动/动干涉效应对叶片非定常负荷的影响[J]. 航空学报,2014,35(7): 1874-1881. GAO Limin,MIAO Fang,LI Ruiyu,et al. Effect of rotor/rotor interactions on blades unsteady loading[J]. Acta Aeronautica et Astronautica Sinica,2014,35(7): 1874-1881. (in Chinese

    GAO Limin, MIAO Fang, LI Ruiyu, et al. Effect of rotor/rotor interactions on blades unsteady loading[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1874-1881. (in Chinese)
    [30] 郭彦超,高丽敏,杨冠华,等. 对转压气机中自循环机匣处理扩稳机理的研究[J]. 航空动力学报,2022,37(1): 191-203. GUO Yanchao,GAO Limin,YANG Guanhua,et al. Study on the mechanism of stability improvement of the self-recirculating casing treatment in a counter-rotating compressor[J]. Journal of Aerospace Power,2022,37(1): 191-203. (in Chinese

    GUO Yanchao, GAO Limin, YANG Guanhua, et al. Study on the mechanism of stability improvement of the self-recirculating casing treatment in a counter-rotating compressor[J]. Journal of Aerospace Power, 2022, 37(1): 191-203. (in Chinese)
    [31] CAMP T R,DAY I J. A study of spike and modal stall phenomena in a low-speed axial compressor[J]. Journal of Turbomachinery,1998,120(3): 393-401. doi: 10.1115/1.2841730
    [32] DAY I J. Stall,surge,and 75 years of research[J]. Journal of Turbomachinery,2016,138(1): 011001. doi: 10.1115/1.4031473
    [33] DUC V H,TAN CHOON S,GREITZER EDWARD M. Criteria for spike initiated rotating stall[J]. Journal of Turbomachinery,2008,130(1): 011023. doi: 10.1115/1.2750674
    [34] 李晓军,高丽敏,谢建,等. 双级对转压气机的失速机理[J]. 航空动力学报,2013,28(1): 188-194. LI Xiaojun,GAO Limin,XIE Jian,et al. Rotating stall mechanism of dual-stage contra-rotating compressor[J]. Journal of Aerospace Power,2013,28(1): 188-194. (in Chinese

    LI Xiaojun, GAO Limin, XIE Jian, et al. Rotating stall mechanism of dual-stage contra-rotating compressor[J]. Journal of Aerospace Power, 2013, 28(1): 188-194. (in Chinese)
    [35] MAO Xiaochen,LIU Bo. Numerical study of the unsteady behaviors and rotating stall inception process in a counter-rotating axial compressor[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2016,230(14): 2716-2727. doi: 10.1177/0954410016630565
    [36] HAH C,VOGES M,MUELLER M,et al. Characteristics of tip clearance flow instability in a transonic compressor: ASME Paper GT2010-22101 [R] [R]. Glasgow,UK: American Society of Mechanical Engineers,2010.
    [37] YAMADA K,KIKUTA H,FURUKAWA M,et al. Effects of tip clearance flow on rotating stall inception process in an axial compressor rotor[J]. Transactions of the Japan Society of Mechanical Engineers: Series B,2013,79(801): 900-916. doi: 10.1299/kikaib.79.900
    [38] WANG Hao,WU Yadong,WANG Yangang,et al. Evolution of the flow instabilities in an axial compressor rotor with large tip clearance: an experimental and URANS study[J]. Aerospace Science and Technology,2020,96: 105557. doi: 10.1016/j.ast.2019.105557
    [39] GAO Limin,LI Ruiyu,MIAO Fang,et al. Unsteady investigation on tip flow field and rotating stall in counter-rotating axial compressor[J]. Journal of Engineering for Gas Turbines and Power,2015,137(7): 072603. doi: 10.1115/1.4029101
    [40] CAMERON J D,BENNINGTON M A,ROSS M H,et al. The influence of tip clearance momentum flux on stall inception in a high-speed axial compressor[J]. Journal of Turbomachinery,2013,135(5): 051005. doi: 10.1115/1.4007800
    [41] SIRAKOV B T,TAN C S. Effect of unsteady stator wake-rotor double-leakage tip clearance flow interaction on time-average compressor performance[J]. Journal of Turbomachinery,2003,125(3): 465-474. doi: 10.1115/1.1574822
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  44
  • HTML浏览量:  23
  • PDF量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 网络出版日期:  2023-12-25

目录

    /

    返回文章
    返回