留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带轴向通流冷却的动压气体轴承静承载力和气动热多参数影响分析

高齐宏 孙文静 王宇婕 张靖周 张镜洋 罗欣洋

高齐宏, 孙文静, 王宇婕, 等. 带轴向通流冷却的动压气体轴承静承载力和气动热多参数影响分析[J]. 航空动力学报, 2024, 39(6):20220393 doi: 10.13224/j.cnki.jasp.20220393
引用本文: 高齐宏, 孙文静, 王宇婕, 等. 带轴向通流冷却的动压气体轴承静承载力和气动热多参数影响分析[J]. 航空动力学报, 2024, 39(6):20220393 doi: 10.13224/j.cnki.jasp.20220393
GAO Qihong, SUN Wenjing, WANG Yujie, et al. Multi-parameters analysis on static bearing load and aerodynamic heat of hydrodynamic gas bearing with axial throughflow cooling[J]. Journal of Aerospace Power, 2024, 39(6):20220393 doi: 10.13224/j.cnki.jasp.20220393
Citation: GAO Qihong, SUN Wenjing, WANG Yujie, et al. Multi-parameters analysis on static bearing load and aerodynamic heat of hydrodynamic gas bearing with axial throughflow cooling[J]. Journal of Aerospace Power, 2024, 39(6):20220393 doi: 10.13224/j.cnki.jasp.20220393

带轴向通流冷却的动压气体轴承静承载力和气动热多参数影响分析

doi: 10.13224/j.cnki.jasp.20220393
基金项目: 航空基金(201928052008); 江苏省自然科学基金青年基金 (BK20200448); 中国博士后基金站前特别资助项目(2020TQ0143)
详细信息
    作者简介:

    高齐宏(1996-),男,博士生,主要研究方向为强化冷却。E-mail:nuaagaoqh@nuaa.edu.cn

    通讯作者:

    孙文静(1991-),女,讲师,博士,主要研究方向为多相流流动及传热。E-mail:wjsun@nuaa.edu.cn

  • 中图分类号: V231.1

Multi-parameters analysis on static bearing load and aerodynamic heat of hydrodynamic gas bearing with axial throughflow cooling

  • 摘要:

    在运行状态稳定条件下,进行了带轴向通流冷却的动压气体轴承三维流-固耦合数值模拟,以分析静承载力和气动热的多参数影响关联。结果表明:在气膜层间隙中,旋转强剪切驱动的周向流动占主导机制,在强烈的旋转流驱动下,进口端的轴向通流被诱导而随之转动,随后在气膜厚度较大的区域向出口端运动,并与通道周向流动形成叠加而呈现螺旋状的流动迹线;无论是对于静承载力还是气动热,偏心率均是最重要的影响参数,对于静承载力而言,气膜平均间隙的影响显著高于轴向通流质量流量的影响,而对于气动热而言,轴向通流质量流量的影响则显著高于气膜平均间隙的影响;在静载荷水平相当时,小偏心率-小气膜平均间隙工况的气动热效应相对较弱,反之,大偏心率-大气膜平均间隙工况的气动热效应最为显著,其面临的散热问题也更为严重。

     

  • 图 1  动压气体轴承结构示意图

    Figure 1.  Schematic diagram of hydrodynamic gas journal bearing structure

    图 2  箔片组件结构示意图

    Figure 2.  Schematic diagram of foil assembly

    图 3  变形和接触长度

    Figure 3.  Deformation and contact length

    图 4  轴向通流流动示意图

    Figure 4.  Schematic diagram of axial-throughout flow

    图 5  计算网格及其无关性测试

    Figure 5.  Computational meshes and independence test

    图 6  转子表面压力分布的验证

    Figure 6.  Validation of rotor surface pressure distribution

    图 7  无轴向通流的流场特征(ε=0.9、Ci=0.07 mm)

    Figure 7.  Flow features in absence of axial thoughflow (ε=0.9,Ci=0.07 mm)

    图 8  轴承支撑段中截面气膜层压力分布云图

    Figure 8.  Pressure contours in film layer on middle axial sections of journal bearing

    图 9  转轴表面压力分布云图

    Figure 9.  Pressure contours on shaft surface

    图 10  转轴表面温度分布

    Figure 10.  Temperature contours on shaft surface

    图 11  周向平均温度分布

    Figure 11.  Circumferential-averaged temperature distributions

    图 12  偏心率对静特性的影响(mi=0 kg/h, Ci=0.07 mm)

    Figure 12.  Effects of eccentricity ratio on static characteristics (mi=0 kg/h, Ci=0.07 mm)

    图 13  气膜平均间隙对静特性的影响(mi=0 kg/h, ε=0.09)

    Figure 13.  Effects of film thickness on static characteristics(mi=0 kg/h, ε=0.09)

    图 14  存在轴向通流的流场特征(mi=35 kg/h、ε=0.9、Ci=0.07 mm)

    Figure 14.  Flow features in presence of axial thoughflow (mi=35 kg/h,ε=0.9,Ci=0.07 mm)

    图 15  轴向通流质量流量对静特性的影响(ε=0.9,Ci=0.07 mm)

    Figure 15.  Effects of axial-throughflow mass flowrate on static characteristics (ε=0.9,Ci=0.07 mm)

    图 16  轴向通流质量流量对表面温度的影响(ε=0.09,Ci=0.07 mm)

    Figure 16.  Effects of axial-throughflow mass flowrate on surface temperature (ε=0.9,Ci=0.07 mm)

    图 17  主要参数的敏感度分析

    Figure 17.  Sensitivity of main parameters

    图 18  相同静承载力下转轴表面压力分布云图

    Figure 18.  Pressure contours on shaft surface under same static bearing load

    图 19  相同静承载力下转轴和顶箔表面温度分布云图

    Figure 19.  Temperature contours on shaft surface and top foil surface under same static bearing load

    图 20  相同静承载力下转轴和顶箔表面温度对比

    Figure 20.  Temperature comparisons under same static bearing load

    表  1  轴承主要结构参数

    Table  1.   Main geometric parameters of journal bearing mm

    参数 数值
    Ro 11.51
    Ri 10.95
    R 11.02
    L 25
    下载: 导出CSV

    表  2  设计变量及变化范围

    Table  2.   Design variables and the design space

    参数取值下限取值上限
    Ci/mm0.070.13
    $ {\dot{m}}_{\mathrm{i}} $/(kg/h)035
    ε0.50.9
    下载: 导出CSV

    表  3  正交参数表

    Table  3.   Orthogonal parameters

    序号 Rez ε Ci/H
    1 0 −­0.5 0.125
    2 940 0.6 0.161
    3 2800 0.7 0.179
    4 4700 0.8 0.196
    5 6600 0.9 0.232
    下载: 导出CSV

    表  4  相同静承载力下的对比工况

    Table  4.   Testing samples under the same static bearing load

    参数工况1工况2工况3
    Ci/mm0.070.090.11
    ε0.70.80.9
    Fcal/N21.521.521.5
    FCFD/N21.521.622.9
    Qcal/W34.838.441.9
    QCFD/W33.437.945.3
    下载: 导出CSV
  • [1] HESHMAT H. Advancements in the performance of aerodynamic foil journal bearings: high speed and load capability[J]. Journal of Tribology,1994,116: 287-294. doi: 10.1115/1.2927211
    [2] 李海旺,尹帅,闫晓军. 超微型高速空气轴承的动态特性[J]. 航空动力学报,2017,32(11): 2680-2686. LI Haiwang,YIN Shuai,YAN Xiaojun. Dynamic performance of super micro high speed air bearings[J]. Journal of Aerospace Power,2017,32(11): 2680-2686. (in Chinese doi: 10.13224/j.cnki.jasp.2017.11.015

    LI Haiwang, YIN Shuai, YAN Xiaojun. Dynamic performance of super micro high speed air bearings[J]. Journal of Aerospace Power, 2017, 32(11): 2680-2686. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.11.015
    [3] 谢伟松,林鑫,王伟韬,等. 航空发动机弹性箔片气体动压轴承技术研究及性能评价综述[J]. 润滑与密封,2018,43(7): 136-147. XIE Weisong,LIN Xin,WANG Weitao,et al. Review of technique application and performance evaluation for aerodynamic elastic foil gas bearing in aero-engine[J]. Lubrication Engineering,2018,43(7): 136-147. (in Chinese doi: 10.3969/j.issn.0254-0150.2018.07.025

    XIE Weisong, LIN Xin, WANG Weitao, et al. Review of technique application and performance evaluation for aerodynamic elastic foil gas bearing in aero-engine[J]. Lubrication Engineering, 2018, 43(7): 136-147. (in Chinese) doi: 10.3969/j.issn.0254-0150.2018.07.025
    [4] SAMANTA P,MURMU N C,KHONSARI M M. The evolution of foil bearing technology[J]. Tribology International,2019,135: 305-323. doi: 10.1016/j.triboint.2019.03.021
    [5] RYU K,SAN ANDRÉS L. On the failure of a gas foil bearing: high temperature operation without cooling flow[J]. Journal of Engineering for Gas Turbines and Power,2013,135(11): 112506. doi: 10.1115/1.4025079
    [6] SIM K,LEE Y B,SONG J W,et al. Identification of the dynamic performance of a gas foil journal bearing operating at high temperatures[J]. Journal of Mechanical Science and Technology,2014,28(1): 43-51. doi: 10.1007/s12206-013-0945-6
    [7] SAMANTA P,KHONSARI M M. On the thermoelastic instability of foil bearings[J]. Tribology International,2018,121: 10-20. doi: 10.1016/j.triboint.2018.01.014
    [8] SALEHI M,SWANSON E,HESHMAT H. Thermal features of compliant foil bearings: theory and experiments[J]. Journal of Tribology,2001,123(3): 566-571. doi: 10.1115/1.1308038
    [9] RADIL K,DELLACORTE C,ZESZOTEK M. Thermal management techniques for oil-free turbomachinery systems[J]. Tribology Transactions,2007,50(3): 319-327. doi: 10.1080/10402000701413497
    [10] KIM T H,SAN ANDRÉS L. Thermohydrodynamic model predictions and performance measurements of bump-type foil bearing for oil-free turboshaft engines in rotorcraft propulsion systems[J]. Journal of Tribology,2010,132(1): 011701. doi: 10.1115/1.4000279
    [11] RADIL K,BATCHO Z. Air injection as a thermal management technique for radial foil air bearings[J]. Tribology Transactions,2011,54(4): 666-673. doi: 10.1080/10402004.2011.589964
    [12] SHRESTHA S K,KIM D,CHEOL KIM Y. Experimental feasibility study of radial injection cooling of three-pad air foil bearings[J]. Journal of Tribology,2013,135(4): 041703. doi: 10.1115/1.4024547
    [13] RYU K,ANDRÉS L S. Effect of cooling flow on the operation of a HotRotor-gas foil bearing system[J]. Journal of Engineering for Gas Turbines and Power,2012,134(10): 102511. doi: 10.1115/1.4007067
    [14] LEE D,LIM H,CHOI B,et al. Thermal behavior of radial foil bearings supporting an oil-free gas turbine: design of the cooling flow passage and modeling of the thermal system[J]. Journal of Engineering for Gas Turbines and Power,2017,139(6): 061902. doi: 10.1115/1.4035324
    [15] ZHANG Kai,ZHAO Xueyuan,FENG Kai,et al. Thermohydrodynamic analysis and thermal management of hybrid bump-metal mesh foil bearings: experimental tests and theoretical predictions[J]. International Journal of Thermal Sciences,2018,127: 91-104. doi: 10.1016/j.ijthermalsci.2018.01.018
    [16] 徐方程,张广辉,孙毅,等. 平箔片楔形高度对气体止推箔片轴承特性影响[J]. 航空动力学报,2016,31(12): 3064-3072. XU Fangcheng,ZHANG Guanghui,SUN Yi,et al. Performance analysis of air foil thrust bearings with different top foil taper heights[J]. Journal of Aerospace Power,2016,31(12): 3064-3072. (in Chinese doi: 10.13224/j.cnki.jasp.2016.12.031

    XU Fangcheng, ZHANG Guanghui, SUN Yi, et al. Performance analysis of air foil thrust bearings with different top foil taper heights[J]. Journal of Aerospace Power, 2016, 31(12): 3064-3072. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.12.031
    [17] 王锐,侯安平,李忠,等. 厚顶箔的箔片动压轴承性能的数值研究[J]. 航空动力学报,2020,35(10): 2123-2135. WANG Rui,HOU Anping,LI Zhong,et al. Numerical investigation of gas journal foil bearing performance with thick top foil[J]. Journal of Aerospace Power,2020,35(10): 2123-2135. (in Chinese doi: 10.13224/j.cnki.jasp.2020.10.012

    WANG Rui, HOU Anping, LI Zhong, et al. Numerical investigation of gas journal foil bearing performance with thick top foil[J]. Journal of Aerospace Power, 2020, 35(10): 2123-2135. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.10.012
    [18] ZHOU Yu,SHAO Longtao,ZHANG Can,et al. Numerical and experimental investigation on dynamic performance of bump foil journal bearing based on journal orbit[J]. Chinese Journal of Aeronautics,2021,34(2): 586-600. doi: 10.1016/j.cja.2019.12.001
    [19] PENG Z C,KHONSARI M M. A thermohydrodynamic analysis of foil journal bearings[J]. Journal of Tribology,2006,128(3): 534-541. doi: 10.1115/1.2197526
    [20] SIM K,KIM D. Thermohydrodynamic analysis of compliant flexure pivot tilting pad gas bearings[J]. Journal of Engineering for Gas Turbines and Power,2008,130(3): 032502. doi: 10.1115/1.2836616
    [21] 冯凯,邓志洪,赵雪源,等. 箔片气体轴承静态特性和温度特性实验[J]. 航空动力学报,2017,32(6): 1394-1399. FENG Kai,DENG Zhihong,ZHAO Xueyuan,et al. Test on static and temperature characteristics of gas foil bearing[J]. Journal of Aerospace Power,2017,32(6): 1394-1399. (in Chinese doi: 10.13224/j.cnki.jasp.2017.06.016

    FENG Kai, DENG Zhihong, ZHAO Xueyuan, et al. Test on static and temperature characteristics of gas foil bearing[J]. Journal of Aerospace Power, 2017, 32(6): 1394-1399. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.06.016
    [22] AKSOY S,AKSIT M F. A fully coupled 3D thermo-elastohydrodynamics model for a bump-type compliant foil journal bearing[J]. Tribology International,2015,82: 110-122. doi: 10.1016/j.triboint.2014.10.001
    [23] LEE D,KIM D. Thermohydrodynamic analyses of bump air foil bearings with detailed thermal model of foil structures and rotor[J]. Journal of Tribology,2010,132(2): 021704. doi: 10.1115/1.4001014
    [24] LEE D,KIM D,SADASHIVA R P. Transient thermal behavior of preloaded three-pad foil bearings: modeling and experiments[J]. Journal of Tribology,2011,133(2): 021703. doi: 10.1115/1.4003561
    [25] LE LEZ S,ARGHIR M,FRENE J. Static and dynamic characterization of a bump-type foil bearing structure[J]. Journal of Tribology,2007,129(1): 75-83. doi: 10.1115/1.2390717
    [26] ŻYWICA G,BAGIŃSKI P. Investigation of gas foil bearings with an adaptive and non-linear structure[J]. Acta Mechanica et Automatica,2019,13(1): 5-10. doi: 10.2478/ama-2019-0001
    [27] GARCIA M,BOU-SAÏD B,ROCCHI J,et al. Refrigerant foil bearing behavior: a thermo-hydrodynamic study[J]. Tribology International,2013,65: 363-369. doi: 10.1016/j.triboint.2012.12.006
    [28] SWEET J N,ROTH E P,MOSS M. Thermal conductivity of Inconel 718 and 304 stainless steel[J]. International Journal of Thermophysics,1987,8(5): 593-606. doi: 10.1007/BF00503645
    [29] 张镜洋,赵晓荣,常海萍,等. 边界滑移对波箔型动压气体轴承静特性的影响[J]. 推进技术,2018,39(2): 388-395. ZHANG Jingyang,ZHAO Xiaorong,CHANG Haiping,et al. Effects of sliding boundary on static characteristics of aerodynamic compliant foil bearing[J]. Journal of Propulsion Technology,2018,39(2): 388-395. (in Chinese doi: 10.13675/j.cnki.tjjs.2018.02.018

    ZHANG Jingyang, ZHAO Xiaorong, CHANG Haiping, et al. Effects of sliding boundary on static characteristics of aerodynamic compliant foil bearing[J]. Journal of Propulsion Technology, 2018, 39(2): 388-395. (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.02.018
    [30] 周健斌,孟光,张文明. 微机电系统径向气体轴承特性研究[J]. 振动与冲击,2007,26(9): 30-33,168. ZHOU Jianbin,MENG Guang,ZHANG Wenming. Characteristics of micro gas journal bearing[J]. Journal of Vibration and Shock,2007,26(9): 30-33,168. (in Chinese doi: 10.3969/j.issn.1000-3835.2007.09.008

    ZHOU Jianbin, MENG Guang, ZHANG Wenming. Characteristics of micro gas journal bearing[J]. Journal of Vibration and Shock, 2007, 26(9): 30-33, 168. (in Chinese) doi: 10.3969/j.issn.1000-3835.2007.09.008
    [31] QIN Kan,LI Daijin,HUANG Chuang,et al. Numerical investigation on heat transfer characteristics of Taylor Couette flows operating with CO2[J]. Applied Thermal Engineering,2020,165: 114570. doi: 10.1016/j.applthermaleng.2019.114570
    [32] CHIPPERFIELD A J. The MATLAB genetic algorithm toolbox[C]//Proceedings of IEE Colloquium on Applied Control Techniques Using MATLAB. London,UK: IEE,1995: 1-10.
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  54
  • HTML浏览量:  18
  • PDF量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 网络出版日期:  2023-11-20

目录

    /

    返回文章
    返回