留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Wiener过程的涡轮盘榫槽裂纹扩展可靠性分析

王宁晨 胡殿印 刘茜 鄢林 王荣桥

王宁晨, 胡殿印, 刘茜, 等. 基于Wiener过程的涡轮盘榫槽裂纹扩展可靠性分析[J]. 航空动力学报, 2022, 37(11):2440-2447 doi: 10.13224/j.cnki.jasp.20220402
引用本文: 王宁晨, 胡殿印, 刘茜, 等. 基于Wiener过程的涡轮盘榫槽裂纹扩展可靠性分析[J]. 航空动力学报, 2022, 37(11):2440-2447 doi: 10.13224/j.cnki.jasp.20220402
WANG Ningchen, HU Dianyin, LIU Xi, et al. Reliability analysis of crack growth in turbine disk mortise based on Wiener process[J]. Journal of Aerospace Power, 2022, 37(11):2440-2447 doi: 10.13224/j.cnki.jasp.20220402
Citation: WANG Ningchen, HU Dianyin, LIU Xi, et al. Reliability analysis of crack growth in turbine disk mortise based on Wiener process[J]. Journal of Aerospace Power, 2022, 37(11):2440-2447 doi: 10.13224/j.cnki.jasp.20220402

基于Wiener过程的涡轮盘榫槽裂纹扩展可靠性分析

doi: 10.13224/j.cnki.jasp.20220402
基金项目: 国家自然科学基金(51875020,52022007,52105138); 国家科技重大专项(J2019-Ⅳ-0009-0077,J2019-Ⅳ-0016-0084)
详细信息
    作者简介:

    王宁晨(1998-),男,硕士生,主要从事航空发动机结构强度及可靠性研究

    通讯作者:

    刘茜(1994-),女,博士,主要从事航空发动机疲劳可靠性、不确定性量化、复合材料损伤分析研究。E-mail:liuxi@buaa.edu.cn

  • 中图分类号: V232.3

Reliability analysis of crack growth in turbine disk mortise based on Wiener process

  • 摘要:

    建立了考虑裂纹扩展退化过程的时变模型,并应用于涡轮盘榫槽裂纹扩展的概率寿命分析。首先,引入双时间尺度函数的Wiener过程,建立了GH4720Li高温合金的裂纹扩展时变模型,并通过紧凑拉伸试件的裂纹扩展试验进行验证。接着,以涡轮盘榫槽齿根关键部位为对象,建立了榫槽齿根角裂纹的权函数应力强度因子求解方法,并与真实涡轮盘榫槽裂纹扩展有限元分析结果进行对比。最后,结合权函数与裂纹扩展时变模型,建立了涡轮盘榫槽疲劳裂纹扩展可靠性分析方法。分析结果表明,涡轮盘榫槽结构裂纹扩展退化的寿命呈现较大的分散性,均值为14177循环,标准差为1090.09循环,99.87%可靠度下的裂纹扩展寿命预测为10312循环。

     

  • 图 1  CT试件疲劳裂纹扩展a-N曲线

    Figure 1.  a-N curves of fatigue crack growth for CT specimens

    图 2  CT试件da/dNK关系图

    Figure 2.  Relationship between da/dN and ΔK for CT specimens

    图 3  CT试件对数裂纹扩展速率曲线

    Figure 3.  Curves of logarithmic crack growth rate for CT specimens

    图 4  CT试件对数裂纹扩展速率标准差

    Figure 4.  Standard deviation of logarithmic crack growth rate for CT specimens

    图 5  裂纹扩展时变模型中值曲线

    Figure 5.  Median curve of time-varying fatigue crack growth model

    图 6  裂纹扩展时变模型残差

    Figure 6.  Residual of time-varying fatigue crack growth model

    图 7  涡轮盘榫槽有限元分析结果

    Figure 7.  Results of finite element analysis of turbine disk mortise

    图 8  榫槽角裂纹示意图

    Figure 8.  Diagram of corner crack in a mortise

    图 9  应力强度因子计算结果对比

    Figure 9.  Comparison of calculation results of stress intensity factor

    图 10  权函数法裂纹扩展模拟结果对比

    Figure 10.  Comparison of simulation results of crack growth by weight function method

    图 11  裂纹扩展概率寿命评估流程

    Figure 11.  Assessment process of probabilistic crack growth life

    图 12  裂纹扩展概率寿命及裂纹扩展寿命累积分布

    Figure 12.  Probabilistic crack growth life and cumulative distribution of crack growth life

    表  1  参考载荷及应力强度因子

    Table  1.   Reference loadings and stress intensity factors

    载荷示意图应力分布参考应力强度因子
    均布$ \sigma \left( x \right) = {\sigma _0} $$K_{0\;A/B}^{} = {\sigma _0}\sqrt {\dfrac{ { {\text{π} }b} }{Q} } F_{0\;A/B}^{}$
    线性$\sigma \left( x \right) = {\sigma _0}\left( {1 - \dfrac{x}{a} } \right)$$K_{1A/B}^{} = {\sigma _0}\sqrt {\dfrac{ { {\text{π} }b} }{Q} } F_{1A/B}^{}$
    2次$\sigma \left( x \right) = {\sigma _0}{\left( {1 - \dfrac{x}{a} } \right)^2}$$K_{2A/B}^{} = {\sigma _0}\sqrt {\dfrac{ { {\text{π} }b} }{Q} } F_{2A/B}^{}$
    下载: 导出CSV

    表  2  参考载荷下拟合参数$ p_k^{ij} $

    Table  2.   Fitting parameter $ p_k^{ij} $ under reference loadings

    载荷$ p_k^{ij} $AB
    αi0αi1αi2αi3αi4βi0βi1βi2βi3βi4
    均布
    i=0
    p1ij1.995−1.60318.444−25.50018.0132.387−1.54220.039−26.52122.052
    p2ij−1.0881.830−18.77529.690−21.158−1.6241.590−19.94927.390−22.745
    p3ij0.300−0.6746.408−10.7567.6690.459−0.5296.562−9.2347.673
    p4ij−0.0300.079−0.7151.237−0.880−0.0460.057−0.7041.008−0.839
    线性
    i=1
    p1ij0.494−0.79711.320−16.51111.8411.990−0.78011.741−14.27113.364
    p2ij−0.1850.765−10.81018.061−13.243−1.3530.695−11.06513.685−13.129
    p3ij0.042−0.2563.522−6.2784.6450.386−0.2103.506−4.3894.288
    p4ij−0.0040.029−0.3790.700−0.520−0.0390.021−0.3670.463−0.459
    2次
    i=2
    p1ij0.268−0.6458.770−13.2959.4531.749−0.5788.682−10.35310.179
    p2ij−0.0830.625−8.42114.500−10.524−1.1920.519−8.2029.950−10.021
    p3ij0.016−0.2092.749−5.0273.6790.342−0.1582.602−3.1943.277
    p4ij−0.0010.023−0.2960.559−0.410−0.0340.016−0.2720.337−0.351
    下载: 导出CSV

    表  3  不同可靠度下裂纹扩展寿命

    Table  3.   Crack growth life at different reliabilities

    可靠度/%寿命/循环
    50.0014205
    99.0011465
    99.8710312
    99.998301
    下载: 导出CSV
  • [1] 沈锡钢. 大涵道比涡扇发动机总体性能与循环参数设计[J]. 航空科学技术,2011(4): 4-7. doi: 10.3969/j.issn.1007-5453.2011.04.002

    SHEN Xigang. Design of performance and cycle parameters of high bypass ratio turbofan[J]. Aeronautical Science and Technology,2011(4): 4-7. (in Chinese) doi: 10.3969/j.issn.1007-5453.2011.04.002
    [2] 陈光. 航空发动机结构设计分析[M]. 北京:北京航空航天大学出版社,2014.
    [3] LIN Y K,YANG J N. A stochastic theory of fatigue crack propagation[J]. AIAA Journal,1985,23(1): 117-124. doi: 10.2514/3.8879
    [4] LONG X Y,LIU K,JIANG C,et al. Uncertainty propagation method for probabilistic fatigue crack growth life prediction[J]. Theoretical and Applied Fracture Mechanics,2019,103: 102268.1-102268.13.
    [5] 熊峻江,刘文挺,高镇同. 疲劳裂纹扩展速率试验数据的可靠性分析模型[J]. 强度与环境,1997(4): 6-10.

    XIONG Junjiang,LIU Wenting,GAO Zhentong. Reliability analysis models of fatigue crack growth rate data[J]. Structure and Environment Engineering,1997(4): 6-10. (in Chinese)
    [6] GIANNELLA V. Stochastic approach to fatigue crack-growth simulation for a railway axle under input data variability[J]. International Journal of Fatigue,2021,144: 106044.1-106044.15.
    [7] LUO J,BOWEN P. A probabilistic methodology for fatigue life prediction[J]. Acta Material,2003,51(12): 3537-3550. doi: 10.1016/S1359-6454(03)00172-1
    [8] YANG J N,HSI W H,MANNING S D,et al. Stochastic crack propagation in fastener holes[J]. Journal of Aircraft,1985,22(9): 810-817. doi: 10.2514/3.45206
    [9] YE Z,WANG Y,TSUI K,et al. Degradation data analysis using Wiener processes with measurement errors[J]. IEEE Transactions on Reliability,2013,62(4): 772-780. doi: 10.1109/TR.2013.2284733
    [10] 厉海涛,金光,周经伦,等. 动量轮维纳过程退化建模与寿命预测[J]. 航空动力学报,2011,26(3): 622-627. doi: 10.13224/j.cnki.jasp.2011.03.022

    LI Haitao,JIN Guang,ZHOU Jinglun,et al. Momentum wheel Wiener process degradation modeling and life prediction[J]. Journal of Aerospace Power,2011,26(3): 622-627. (in Chinese) doi: 10.13224/j.cnki.jasp.2011.03.022
    [11] 朱磊,左洪福,蔡景. 基于Wiener过程的民用航空发动机性能可靠性预测[J]. 航空动力学报,2013,28(5): 1006-1012.

    ZHU Lei,ZUO Hongfu,CAI Jing. Performance reliability prediction for civil aviation aircraft engine based on Wiener process[J]. Journal of Aerospace Power,2013,28(5): 1006-1012. (in Chinese)
    [12] WHITMORE G A,SCHENKELBERG F. Modelling accelerated degradation data using Wiener diffusion with a timescale transformation[J]. Lifetime Data Analysis,1997,3(1): 27-45. doi: 10.1023/A:1009664101413
    [13] ANNOR-NYARKO M,XIA Hong. Numerical fracture analysis of a reactor pressure vessel based on abaqus-FRANC3D co-simulation method[J]. Procedia Structural Integrity,2022,37: 225-232. doi: 10.1016/j.prostr.2022.01.078
    [14] RICE J. Some remarks on elastic crack-tip stress field[J]. International Journal of Solids and Structures,1972,8(6): 751-758. doi: 10.1016/0020-7683(72)90040-6
    [15] BUECKNER H F. A novel principle for the computation of stress intensity factors[J]. Journal of Applied Mathematics and Mechanics,1970,50(10): 529-546.
    [16] MOFTAKHAR A A,GLINKA G. Calculation of stress intensity factors by efficient integration of weight functions[J]. Engineering Fracture Mechanics,1992,43(5): 749-756. doi: 10.1016/0013-7944(92)90005-Y
    [17] GLINKA G,SHEN G. Universal features of weight functions for cracks in mode I[J]. Engineering Fracture Mechanics,1991,40(6): 1135-1146. doi: 10.1016/0013-7944(91)90177-3
    [18] 万志鹏,王涛,李钊,等. 晶界一次γ′相对GH4720Li合金晶粒长大行为的影响[J]. 材料热处理学报,2020,41(8): 173-181.

    WAN Zhipeng,WANG Tao,LI Zhao,et al. Influence of grain boundary primary γ′ precipitates on grain growth behavior of GH4720Li superalloy[J]. Transctions of Materials and Heat Treatment,2020,41(8): 173-181. (in Chinese)
    [19] 王桂荣,赵晴,许良. TC4-DT钛合金小裂纹扩展行为研究[J]. 科技通报,2018,34(6): 95-100. doi: 10.13774/j.cnki.kjtb.2018.06.020

    WANG Guirong,ZHAO Qing,XU Liang. Study on fatigue small crack growth behavior of TC4-DT tianium alloy[J]. Bulletin of Science and Technology,2018,34(6): 95-100. (in Chinese) doi: 10.13774/j.cnki.kjtb.2018.06.020
    [20] 杨杭. 基于统计可靠性的广布疲劳损伤可检裂纹评估[D]. 天津:中国民航大学,2016.

    YANG Hang. Research on widespread fatigue damage detectable crack based on reliability[D]. Tianjin:Civil Aviation University of China,2016.(in Chinese)
    [21] 刘凯,崔荣洪,侯波,等. PVD薄膜传感器裂纹检测概率测定与分析[J]. 材料工程,2019,47(9): 160-166.

    LIU Kai,CUI Ronghong,HOU Bo,et al. Estimation and analysis of probability of PVD film sensor crack detection[J]. Journal of Materials Engineering,2019,47(9): 160-166. (in Chinese)
    [22] LEE D,YOON S,PARK J,et al. Demonstration of model-assisted probability of detection framework for ultrasonic inspection of cracks in compressor blades[J]. NDT and E International,2022,128: 102618.1-102618.11.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  195
  • HTML浏览量:  92
  • PDF量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-04
  • 网络出版日期:  2022-09-09

目录

    /

    返回文章
    返回