留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

收缩扩张型混合管结构参数对圆排波瓣引射器性能影响

肖长庚 刘友宏 张寒 淳杰 黄宇

肖长庚, 刘友宏, 张寒, 等. 收缩扩张型混合管结构参数对圆排波瓣引射器性能影响[J]. 航空动力学报, 2024, 39(6):20220404 doi: 10.13224/j.cnki.jasp.20220404
引用本文: 肖长庚, 刘友宏, 张寒, 等. 收缩扩张型混合管结构参数对圆排波瓣引射器性能影响[J]. 航空动力学报, 2024, 39(6):20220404 doi: 10.13224/j.cnki.jasp.20220404
XIAO Changgeng, LIU Youhong, ZHANG Han, et al. Effect of converging diverging mixing duct geometric parameters on performance of circularly lobed nozzle ejector[J]. Journal of Aerospace Power, 2024, 39(6):20220404 doi: 10.13224/j.cnki.jasp.20220404
Citation: XIAO Changgeng, LIU Youhong, ZHANG Han, et al. Effect of converging diverging mixing duct geometric parameters on performance of circularly lobed nozzle ejector[J]. Journal of Aerospace Power, 2024, 39(6):20220404 doi: 10.13224/j.cnki.jasp.20220404

收缩扩张型混合管结构参数对圆排波瓣引射器性能影响

doi: 10.13224/j.cnki.jasp.20220404
基金项目: 国家重大科技专项(J2019-Ⅲ-0009-0053, 2017-Ⅲ-0003-0027)
详细信息
    作者简介:

    肖长庚(1998-),男,博士生,主要从事传热传质与红外隐身研究

    通讯作者:

    刘友宏(1963-),男,教授、博士生导师,博士,主要从事冷却与隐身研究。E-mail:liuyh@buaa.edu.cn

  • 中图分类号: V235.12+3

Effect of converging diverging mixing duct geometric parameters on performance of circularly lobed nozzle ejector

  • 摘要:

    目前收缩扩张型混合管结构参数对于圆排波瓣引射器影响的相关研究少,为此首先进行了带有不同结构参数收缩扩张型混合管的圆排波瓣喷管和圆形喷管引射器缩比模型引射性能的实验研究。结果表明,当混合管喉道直径和长度较小且主流质量流量较低时,圆形喷管的引射性能高于波瓣喷管,但随着质量流量增加情况发生逆转;当喉道直径和长度较大时,在实验质量流量范围内和满足主流附壁条件下,波瓣喷管引射性能均高于圆形喷管;随着主流质量流量增大,引射质量流量比存在一个极大值,并且随着喉道直径和长度增大,该极大值也逐渐增大,在所研究模型中极大值的最大增长率为58.5%。接着,本文建立了经过实验数据验证的数值计算模型,误差不大于4.5%。仿真结果表明:随着喉道直径和长度增大,总压恢复系数逐渐增大,喉道尺寸的增大对于流动损失具有改善作用。

     

  • 图 1  实验台示意图

    Figure 1.  Schematic diagram of experimental rig

    图 2  实验台实物图

    Figure 2.  Photograph of experimental rig

    图 3  波瓣喷管与收缩扩张型混合管示意图

    Figure 3.  Schematic diagram of lobed nozzle and converging diverging mixing duct

    图 4  波瓣喷管与收缩扩张型混合管实物图

    Figure 4.  Photographs of lobed nozzle and converging diverging mixing duct

    图 5  实验测量得到的引射质量流量比拟合线图

    Figure 5.  Curve fitting of pumping ratios measured by experiment

    图 6  波瓣附近的局部网格

    Figure 6.  Local mesh around the lobe

    图 7  波瓣喷管附近的速度云图

    Figure 7.  Velocity contours around lobed nozzle

    图 8  混合管对称面速度云图

    Figure 8.  Velocity contours at symmetry plane of mixing duct

    图 9  混合管沿程速度特性

    Figure 9.  Velocity characteristic along mixing duct

    图 10  混合管对称面湍动能云图

    Figure 10.  Turbulent kinetic energy contours at symmetry plane of mixing duct

    图 11  混合管沿程各截面质量流量平均湍动能

    Figure 11.  Mass flow-average turbulent kinetic energy at different cross-sections along mixing duct

    图 12  波瓣喷管出口截面涡量云图

    Figure 12.  Vertices contours at lobed nozzle exit cross-section

    图 13  混合管沿程各截面总压恢复系数

    Figure 13.  Total pressure recovery coefficient at different cross-sections along mixing ducts

    表  1  喷管与混合管组合方式

    Table  1.   Combinations of nozzles and mixing ducts

    喷管混合管
    K1K2K3
    NLNLK1NLK2NLK3
    NRNRK1NRK2NRK3
    下载: 导出CSV

    表  2  波瓣喷管NL的几何参数

    Table  2.   Geometric parameters of lobed nozzle NL

    参数 数值
    波瓣段长度L1/d0 8.30
    瓣宽b/d0 0.30
    波峰圆弧半径r1/d0 0.20
    波谷圆弧半径r2/d0 0.20
    喷管进口段直径$ \phi $/d0 3.00
    喷管出口壁厚d/d0 0.20
    下载: 导出CSV

    表  3  收缩扩张型混合管K1、K2、K3的几何参数

    Table  3.   Geometric parameters of converging diverging mixing ducts K1, K2, K3

    参数数值
    K1K2K3
    混合管喉道直径r3/d06.37.17.9
    混合管喉道长度L3/d038.042.347.6
    下载: 导出CSV

    表  4  引射质量流量比实验与仿真结果及误差

    Table  4.   Results and errors between experiment and simulation of pumping ratios

    组合 n 误差/%
    仿真 实验
    NLK1 1.91 2.00 −4.5
    NLK2 2.36 2.45 −3.67
    NLK3 2.87 2.92 −1.71
    NRK1 1.88 1.94 −3.09
    NRK2 2.28 2.20 3.64
    NRK3 2.78 2.82 −1.42
    下载: 导出CSV
  • [1] PRESZ J W. Mixer/ejector noise suppressors[R]. AIAA-91-2243,1991.
    [2] 张靖周,李立国,高潮,等. 波瓣喷管红外抑制系统的实验研究[J]. 航空动力学报,1997,12(2): 212-214. ZHANG Jingzhou,LI Liguo,GAO Chao,et al. An experimental study on a lobed nozzle of an infrared suppression system[J]. Journal of Aerospace Power,1997,12(2): 212-214. (in Chinese doi: 10.13224/j.cnki.jasp.1997.02.028

    ZHANG Jingzhou, LI Liguo, GAO Chao, et al. An experimental study on a lobed nozzle of an infrared suppression system[J]. Journal of Aerospace Power, 1997, 12(2): 212-214. (in Chinese) doi: 10.13224/j.cnki.jasp.1997.02.028
    [3] PRESZ W,REYNOLDS G,MCCORMICK D. Thrust augmentation using mixer-ejector-diffuser systems[R]. AIAA-94-0020,1994.
    [4] TAN Xiaoming,ZHANG Jingzhou,YONG Shan,et al. An experimental investigation on comparison of synthetic and continuous jets impingement heat transfer[J]. International Journal of Heat and Mass Transfer,2015,90: 227-238. doi: 10.1016/j.ijheatmasstransfer.2015.06.065
    [5] MANGATE L D,CHAUDHARI M B. Heat transfer and acoustic study of impinging synthetic jet using diamond and oval shape orifice[J]. International Journal of Thermal Sciences,2015,89: 100-109. doi: 10.1016/j.ijthermalsci.2014.10.006
    [6] 吕元伟,张靖周,王博滟,等. 冠齿喷嘴射流冲击平直靶面对流换热实验[J]. 航空学报,2018,39(3): 121694. LYU Yuanwei,ZHANG Jingzhou,WANG Boyan,et al. Experimental of chevron nozzle jet impingement heat transfer on flat targeting surface[J]. Acta Aeronautica et Astronautica Sinica,2018,39(3): 121694. (in Chinese

    LYU Yuanwei, ZHANG Jingzhou, WANG Boyan, et al. Experimental of chevron nozzle jet impingement heat transfer on flat targeting surface[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 121694. (in Chinese)
    [7] VIOLATO D,IANIRO A,CARDONE G,et al. Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets[J]. International Journal of Heat and Fluid Flow,2012,37: 22-36. doi: 10.1016/j.ijheatfluidflow.2012.06.003
    [8] HERRERO MARTIN R,BUCHLIN J M. Jet impingement heat transfer from lobed nozzles[J]. International Journal of Thermal Sciences,2011,50(7): 1199-1206. doi: 10.1016/j.ijthermalsci.2011.02.017
    [9] HE Chuangxin,LIU Yingzheng. Jet impingement heat transfer of a lobed nozzle: measurements using temperature-sensitive paint and particle image velocimetry[J]. International Journal of Heat and Fluid Flow,2018,71: 111-126. doi: 10.1016/j.ijheatfluidflow.2018.03.017
    [10] YANG H Q,KIM T,LU T J,et al. Flow structure,wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling[J]. International Journal of Heat and Mass Transfer,2010,53(19/20): 4092-4100.
    [11] 施小娟,吉洪湖. 二元收扩喷管设计参数对红外特征影响的数值研究[J]. 航空动力学报,2020,35(5): 944-955. SHI Xiaojuan,JI Honghu. Numerical investigation of influence of two-dimensional convergent and divergent nozzle’s design parameters on infrared characteristics[J]. Journal of Aerospace Power,2020,35(5): 944-955. (in Chinese

    SHI Xiaojuan, JI Honghu. Numerical investigation of influence of two-dimensional convergent and divergent nozzle’s design parameters on infrared characteristics[J]. Journal of Aerospace Power, 2020, 35(5): 944-955. (in Chinese)
    [12] PAN Chengxiong,ZHANG Jingzhou,SHAN Yong. Effects of exhaust temperature on helicopter infrared signature[J]. Applied Thermal Engineering,2013,51(1/2): 529-538.
    [13] PAN Chengxiong,SHAN Yong,ZHANG Jingzhou. Parametric effects on internal aerodynamics of lobed mixer-ejector with curved mixing duct[J]. Journal of Engineering for Gas Turbines and Power,2014,136(6): 061504. doi: 10.1115/1.4026426
    [14] PRESZ W. Short efficient ejector systems[R]. AIAA1987-1837,1987.
    [15] SKEBE S,MCCORMICK D,PRESZ W. Parameter effects on mixer-ejector pumping performance[R]. AIAA1988-188,1988.
    [16] HU Hui,WU Shousheng,SHEN Gongxin. Experimental investigation on the jet mixing flows of lobed nozzles using laser induced fluorescence[R]. AIAA1996-1937,1996.
    [17] HU Hui,SAGA T,KOBAYASHI T,et al. A study on a lobed jet mixing flow by using stereoscopic particle image velocimetry technique[J]. Physics of Fluids,2001,13(11): 3425-3441. doi: 10.1063/1.1409537
    [18] 刘友宏. 波瓣引射混合器冷热态实验研究与数值模拟[D]. 南京: 南京航空航天大学,2000. LIU Youhong. Experimental and numerical investigation of lobed exhaust-ejector mixers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2000. (in Chinese

    LIU Youhong. Experimental and numerical investigation of lobed exhaust-ejector mixers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2000. (in Chinese)
    [19] 刘友宏,刘伟. 圆排波瓣弯曲混合管引射实验与数值模拟[J]. 航空动力学报,2005,20(1): 92-97. LIU Youhong,LIU Wei. Experimental and numerical study of ejection characteristics of circular lobe ejector with bend mixers[J]. Journal of Aerospace Power,2005,20(1): 92-97. (in Chinese doi: 10.3969/j.issn.1000-8055.2005.01.017

    LIU Youhong, LIU Wei. Experimental and numerical study of ejection characteristics of circular lobe ejector with bend mixers[J]. Journal of Aerospace Power, 2005, 20(1): 92-97. (in Chinese) doi: 10.3969/j.issn.1000-8055.2005.01.017
    [20] 刘友宏,陈锵,李立国. 圆排波瓣圆柱混合管的气动特性实验研究[J]. 南京航空航天大学学报,2000,32(4): 375-380. LIU Youhong,CHEN Qiang,LI Liguo. Experimental investigation of internal aerodynamics of periodically axis-symmetry lobed exhaust-ejector mixers[J]. Journal of Nanjing University of Aeronautics & Astronautics,2000,32(4): 375-380. (in Chinese doi: 10.3969/j.issn.1005-2615.2000.04.002

    LIU Youhong, CHEN Qiang, LI Liguo. Experimental investigation of internal aerodynamics of periodically axis-symmetry lobed exhaust-ejector mixers[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2000, 32(4): 375-380. (in Chinese) doi: 10.3969/j.issn.1005-2615.2000.04.002
    [21] LIU Youhong. Experimental and numerical research on high pumping performance mechanism of lobed exhauster-ejector mixer[J]. International Communications in Heat and Mass Transfer,2007,34(2): 197-209. doi: 10.1016/j.icheatmasstransfer.2006.10.003
    [22] 李腾,刘友宏,谢翌,等. 波瓣高宽比对波瓣强迫混合排气系统性能影响[J]. 航空动力学报,2013,28(8): 1736-1743. LI Teng,LIU Youhong,XIE Yi,et al. Effect of ratio of height to width of lobe on performance of forced mixing exhaust system[J]. Journal of Aerospace Power,2013,28(8): 1736-1743. (in Chinese doi: 10.13224/j.cnki.jasp.2013.08.012

    LI Teng, LIU Youhong, XIE Yi, et al. Effect of ratio of height to width of lobe on performance of forced mixing exhaust system[J]. Journal of Aerospace Power, 2013, 28(8): 1736-1743. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.08.012
    [23] 单勇,张靖周. 波瓣喷管引射-混合器涡结构的数值研究[J]. 空气动力学学报,2005,23(3): 355-359. SHAN Yong,ZHANG Jingzhou. Numerical investigation of vortical structures in the lobed mixer-ejector[J]. Acta Aerodynamica Sinica,2005,23(3): 355-359. (in Chinese doi: 10.3969/j.issn.0258-1825.2005.03.017

    SHAN Yong, ZHANG Jingzhou. Numerical investigation of vortical structures in the lobed mixer-ejector[J]. Acta Aerodynamica Sinica, 2005, 23(3): 355-359. (in Chinese) doi: 10.3969/j.issn.0258-1825.2005.03.017
    [24] 潘丞雄,张靖周,单勇. 斜切对抑制引射式波瓣喷管内部流动分离的效果研究[J]. 航空学报,2013,34(2): 255-262. PAN Chengxiong,ZHANG Jingzhou,SHAN Yong. Research on surpressing flow separation of lobed mixer-ejector by scarfing treatment[J]. Acta Aeronautica et Astronautica Sinica,2013,34(2): 255-262. (in Chinese

    PAN Chengxiong, ZHANG Jingzhou, SHAN Yong. Research on surpressing flow separation of lobed mixer-ejector by scarfing treatment[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 255-262. (in Chinese)
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  37
  • HTML浏览量:  12
  • PDF量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-05
  • 网络出版日期:  2023-11-27

目录

    /

    返回文章
    返回