留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直升机超临界尾轴限幅减振器安装位置研究

宋立瑶 王旦 曹鹏 陈柏 朱如鹏

宋立瑶, 王旦, 曹鹏, 等. 直升机超临界尾轴限幅减振器安装位置研究[J]. 航空动力学报, 2024, 39(6):20220409 doi: 10.13224/j.cnki.jasp.20220409
引用本文: 宋立瑶, 王旦, 曹鹏, 等. 直升机超临界尾轴限幅减振器安装位置研究[J]. 航空动力学报, 2024, 39(6):20220409 doi: 10.13224/j.cnki.jasp.20220409
SONG Liyao, WANG Dan, CAO Peng, et al. Study on installation location of dry friction damper for helicopter supercritical tail drive shaft[J]. Journal of Aerospace Power, 2024, 39(6):20220409 doi: 10.13224/j.cnki.jasp.20220409
Citation: SONG Liyao, WANG Dan, CAO Peng, et al. Study on installation location of dry friction damper for helicopter supercritical tail drive shaft[J]. Journal of Aerospace Power, 2024, 39(6):20220409 doi: 10.13224/j.cnki.jasp.20220409

直升机超临界尾轴限幅减振器安装位置研究

doi: 10.13224/j.cnki.jasp.20220409
基金项目: 国家自然科学基金(52005253); 江苏省自然科学基金(BK20200426);南京航空航天大学“直升机传动技术重点实验室”自主课题(HTL-A-22K01&HTL-A-21G07)
详细信息
    作者简介:

    宋立瑶(1998-),女,硕士生,主要研究方向为直升机超临界尾轴的减振技术

    通讯作者:

    王旦(1990-),男,讲师,博士,主要研究方向为直升机传动系统的减振降噪技术。E-mail:wangdan_053@nuaa.edu.cn

  • 中图分类号: V214.19

Study on installation location of dry friction damper for helicopter supercritical tail drive shaft

  • 摘要:

    为了使限幅减振器对传动轴跨1阶及2阶临界转速均起到较好的减振作用,研究了限幅减振器安装位置对传动轴与限幅减振器系统非线性动力学的影响。首先基于Timoshenko梁和非线性碰摩理论建立了传动轴与限幅减振器系统的非线性有限元动力学模型,通过数值计算得到了系统响应。对传动轴典型跨临界过程及安装位置对减振效果的影响进行了分析。结果表明,一个典型的传动轴跨临界过程可以分为4个阶段,分别为无碰摩、拟周期碰摩、同频全周碰摩,最后回到无碰摩阶段。将减振器安装在中间节点只能有效抑制传动轴跨1阶临界转速的振动,而安装在1/4节点及3/8节点处能同时减弱跨1阶及2阶临界转速的振动,但安装在3/8节点处有可能使传动轴无法正常工作。

     

  • 图 1  限幅减振器结构示意图

    Figure 1.  Structure diagram of the dry friction damper

    图 2  带限幅减振器的单跨轴系模型

    Figure 2.  Model of the signal shaft system with a dry friction damper

    图 3  非线性力模型

    Figure 3.  Nonlinear force model

    图 4  传动轴跨临界振型

    Figure 4.  Mode shapes of the shaft as crossing through critical speeds

    图 5  节点9响应

    Figure 5.  Response of node 9

    图 6  节点9分岔图及幅频特性曲线

    Figure 6.  Bifurcation diagram and amplitude frequency characteristic curve of node 9

    图 7  节点9频率瀑布图

    Figure 7.  Waterfall frequency response spectrum of node 9

    图 8  轴心轨迹及庞加莱截面图

    Figure 8.  Whirling orbits and Poincare maps

    图 9  减振器安装位置示意图

    Figure 9.  Illustration location diagram of the damper

    图 10  减振器安装在节点9时的传动轴响应

    Figure 10.  Responses of the shaft when the damper is located at node 9

    图 11  减振器安装在节点5时的传动轴响应

    Figure 11.  Responses of the shaft when the damper is located at node 5

    图 12  减振器安装在节点7时的传动轴响应

    Figure 12.  Responses of the shaft when the damper is located at node 7

    表  1  空心传动轴参数

    Table  1.   Parameters of the hollow shaft

    参数 数值
    长度L/mm 2600
    内径d/mm 111
    外径D/mm 114.2
    密度ρ/(kg/m3 2800
    弹性模量E/GPa 71
    偏心量e/mm 0.3
    下载: 导出CSV

    表  2  限幅减振器相关无量纲参数设定

    Table  2.   Dimensionless parameters of the dry friction damper

    参数 数值
    无量纲碰摩环质量Mr 0.05
    传动轴与碰摩环无量纲法向碰摩刚度K1 15
    传动轴与碰摩环切向碰摩摩擦因数$ {\mu _1} $ 0.1
    传动轴与碰摩环无量纲初始间隙Δ1 3
    无量纲临界干摩擦力Fp 6
    下载: 导出CSV
  • [1] 吴希明,牟晓伟. 直升机关键技术及未来发展与设想[J]. 空气动力学学报,2021,39(3): 1-10. WU Ximing,MU Xiaowei. A perspective of the future development of key helicopter technologies[J]. Acta Aerodynamica Sinica,2021,39(3): 1-10. (in Chinese

    WU Ximing, MU Xiaowei. A perspective of the future development of key helicopter technologies[J]. Acta Aerodynamica Sinica, 2021, 39(3): 1-10. (in Chinese)
    [2] 王锡龙. 粘弹性减振器对直升机传动轴系动力学特性的影响研究[D]. 南京: 南京航空航天大学,2012. WANG Xilong. Research on the effects of viscoelastic damper to the dynamics of helicopter drive shaft system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2012. (in Chinese

    WANG Xilong. Research on the effects of viscoelastic damper to the dynamics of helicopter drive shaft system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [3] 谭武中,王祁波. 直升机传动系统装机振动特性综述[J]. 科学技术创新,2019(2): 1-3. TAN Wuzhong,WANG Qibo. Summary of installed vibration characteristics of helicopter transmission system[J]. Scientific and Technological Innovation,2019(2): 1-3. (in Chinese

    TAN Wuzhong, WANG Qibo. Summary of installed vibration characteristics of helicopter transmission system[J]. Scientific and Technological Innovation, 2019(2): 1-3. (in Chinese)
    [4] 谭蔚,陈晓宇,孟国龙,等. 粘弹性阻尼器在联合塔器中的减振研究[J]. 化工机械,2019,46(2): 131-136,151. TAN Wei,CHEN Xiaoyu,MENG Guolong,et al. Study on vibration reduction of viscoelastic dampers in combined tower[J]. Chemical Engineering & Machinery,2019,46(2): 131-136,151. (in Chinese

    TAN Wei, CHEN Xiaoyu, MENG Guolong, et al. Study on vibration reduction of viscoelastic dampers in combined tower[J]. Chemical Engineering & Machinery, 2019, 46(2): 131-136, 151. (in Chinese)
    [5] 张针粒. 粘弹性隔振器动力学性能理论及实验研究[D]. 武汉: 华中科技大学,2012. ZHANG Zhenli. Theoretical and experimental study on dynamic properties of viscoelastic isolators[D]. Wuhan: Huazhong University of Science and Technology,2012. (in Chinese

    ZHANG Zhenli. Theoretical and experimental study on dynamic properties of viscoelastic isolators[D]. Wuhan: Huazhong University of Science and Technology, 2012. (in Chinese)
    [6] TAHIRI M,KHAMLICHI A,BEZZAZI M. Application of viscoelastic dampers for reducing dynamic response of high-speed railway bridges[J]. International Review of Applied Sciences and Engineering,2020,11(2): 95-106. doi: 10.1556/1848.2020.20004
    [7] 刘阳,陶继忠,郑越青,等. 粘弹性支承柔性转子的动力学分析[J]. 机械设计与制造,2014(6): 191-194. LIU Yang,TAO Jizhong,ZHENG Yueqing,et al. Dynamic analysis of a flexible rotor with viscoelastic support[J]. Machinery Design & Manufacture,2014(6): 191-194. (in Chinese

    LIU Yang, TAO Jizhong, ZHENG Yueqing, et al. Dynamic analysis of a flexible rotor with viscoelastic support[J]. Machinery Design & Manufacture, 2014(6): 191-194. (in Chinese)
    [8] GHAEMMAGHAMI A R,KWON O S. Nonlinear modeling of MDOF structures equipped with viscoelastic dampers with strain,temperature and frequency-dependent properties[J]. Engineering Structures,2018,168: 903-914. doi: 10.1016/j.engstruct.2018.04.037
    [9] MAXIMOV Y,LEGOVICH Y,MAXIMOV D. Frequency characteristics of viscoelastic damper models and evaluation of a damper influence on induced oscillations of mechanical system elements[J]. Meccanica,2021,56(12): 3107-3124. doi: 10.1007/s11012-021-01446-9
    [10] LEWANDOWSKI R,PRZYCHODZKI M. Approximate method for temperature-dependent characteristics of structures with viscoelastic dampers[J]. Archive of Applied Mechanics,2018,88(10): 1695-1711. doi: 10.1007/s00419-018-1394-6
    [11] LI Qiangqiang,XU Zhaodong,DONG Yaorong,et al. Effects of mechanical nonlinearity of viscoelastic dampers on the seismic performance of viscoelasticlly damped structures[J]. Soil Dynamics and Earthquake Engineering,2021,150: 106936. doi: 10.1016/j.soildyn.2021.106936
    [12] ÖZAYDIN O. Vibration reduction of helicopter tail shaft by using dry friction dampers[D]. Ankara,Turkey: Middle East Technical University,2017.
    [13] DŻYGADȽO Z,PERKOWSKI W. Nonlinear dynamic model for flexural vibrations analysis of a supercritical helicopter’s tail rotor drive shaft[R]. Harrogate,UK: 22nd International Congress of Aeronautical Sciences,2000.
    [14] DŻYGADŁO Z,PERKOWSKI W. Research on dynamics of a supercritical propulsion shaft equipped with a dry friction damper[J]. Aircraft Engineering and Aerospace Technology,2002,74(5): 447-454. doi: 10.1108/00022660210442290
    [15] PERKOWSKI W. Dry friction damper for supercritical drive shaft[J]. Journal of KONES Powertrain and Transport,2016,23(4): 389-396. doi: 10.5604/12314005.1217255
    [16] HUANG Zhonghe,TAN Jianping,LIU Chuliang,et al. Dynamic characteristics of a segmented supercritical driveline with flexible couplings and dry friction dampers[J]. Symmetry,2021,13(2): 281. doi: 10.3390/sym13020281
    [17] HUANG Zhonghe,TAN Jianping,LU Xiong. Phase difference and stability of a shaft mounted a dry friction damper: effects of viscous internal damping and gyroscopic moment[J]. Advances in Mechanical Engineering,2021,13(3): 168781402199691.
    [18] 王飞. 挤压油膜转子系统建模方法研究及动力特性分析[D]. 南京: 南京航空航天大学,2018. WANG Fei. Research on modeling method and dynamic characteristic analysis for squeeze film damper rotor system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2018. (in Chinese

    WANG Fei. Research on modeling method and dynamic characteristic analysis for squeeze film damper rotor system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [19] 江俊,陈艳华. 转子与定子碰摩的非线性动力学研究[J]. 力学进展,2013,43(1): 132-148. JIANG Jun,CHEN Yanhua. Advances in the research on nonlinear phenomona in rotor/stator rubbing systems[J]. Advances in Mechanics,2013,43(1): 132-148. (in Chinese

    JIANG Jun, CHEN Yanhua. Advances in the research on nonlinear phenomona in rotor/stator rubbing systems[J]. Advances in Mechanics, 2013, 43(1): 132-148. (in Chinese)
    [20] PENNESTRì E,ROSSI V,SALVINI P,et al. Review and comparison of dry friction force models[J]. Nonlinear Dynamics,2016,83(4): 1785-1801. doi: 10.1007/s11071-015-2485-3
    [21] 王旦,宋立瑶,陈柏,等. 直升机超临界尾传动轴限幅减振器非线性动力学特性研究[J]. 振动工程学报,2023,36(03): 593-605. WANG Dan,SONG Liyao,CHEN Bai,et al. Nonlinear dynamics of a supercritical tail rotor drive shaft equipped with a hybrid damper[J]. Journal of Vibration Engineering,2023,36(03): 593-605. (in Chinese

    WANG Dan, SONG Liyao, CHEN Bai, et al. Nonlinear dynamics of a supercritical tail rotor drive shaft equipped with a hybrid damper[J]. Journal of Vibration Engineering, 2023, 36(03): 593-605. (in Chinese)
    [22] 宋兴武. 直升机尾传动轴系设计[D]. 哈尔滨: 哈尔滨工程大学,2007. SONG Xingwu. Designing of tail transmission shafting for the copter[D]. Harbin: Harbin Engineering University,2007. (in Chinese

    SONG Xingwu. Designing of tail transmission shafting for the copter[D]. Harbin: Harbin Engineering University, 2007. (in Chinese)
    [23] HAN Qingkai,ZHANG Zhiwei,LIU Changli,et al. Periodic motion stability of a dual-disk rotor system with rub-impact at fixed limiter[M]//Ibrahim R A,Babitsky V I,Okuma M. Vibro-impact dynamics of ocean systems and related problems. Berlin,Germany: Springer,2009: 105-119.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  33
  • HTML浏览量:  21
  • PDF量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 网络出版日期:  2023-11-27

目录

    /

    返回文章
    返回