留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叶顶间隙和减振阻尼台对多级轴流压气机性能影响的数值模拟

陈燕 滕鑫 楚武利

陈燕, 滕鑫, 楚武利. 叶顶间隙和减振阻尼台对多级轴流压气机性能影响的数值模拟[J]. 航空动力学报, 2023, 38(3):665-673 doi: 10.13224/j.cnki.jasp.20220412
引用本文: 陈燕, 滕鑫, 楚武利. 叶顶间隙和减振阻尼台对多级轴流压气机性能影响的数值模拟[J]. 航空动力学报, 2023, 38(3):665-673 doi: 10.13224/j.cnki.jasp.20220412
CHEN Yan, TENG Xin, CHU Wuli. Numerical simulation of effect of tip clearance and vibration damper on performance of multi-stage axial flow compressor[J]. Journal of Aerospace Power, 2023, 38(3):665-673 doi: 10.13224/j.cnki.jasp.20220412
Citation: CHEN Yan, TENG Xin, CHU Wuli. Numerical simulation of effect of tip clearance and vibration damper on performance of multi-stage axial flow compressor[J]. Journal of Aerospace Power, 2023, 38(3):665-673 doi: 10.13224/j.cnki.jasp.20220412

叶顶间隙和减振阻尼台对多级轴流压气机性能影响的数值模拟

doi: 10.13224/j.cnki.jasp.20220412
基金项目: 国家自然科学基金(52076179)
详细信息
    作者简介:

    陈燕(1975-),女,副教授,博士,主要从事航空发动机空气系统和旋转盘腔中的流动换热研究

  • 中图分类号: V231.3

Numerical simulation of effect of tip clearance and vibration damper on performance of multi-stage axial flow compressor

  • 摘要:

    以某多级轴流压气机为研究对象,采用数值模拟的方法研究了叶顶间隙和减振阻尼台对压气机气动性能的影响。研究揭示了叶顶间隙变化对叶顶泄漏流动的影响规律,分析了各级转子叶顶间隙变化对多级轴流压气机性能影响的相对大小。研究发现针对所研究的多级轴流压气机,第5级转子叶顶间隙的变化对压气机性能的影响幅度最大,当叶顶间隙从0.390 mm增加到1.007 mm时,级效率下降了1.72%;而其他级的效率下降幅度较少,最大降幅不超过0.6%。此外,研究了第1级及第5级转子叶片阻尼台对多级压气机性能影响,分析了阻尼台对流场结构及流通能力的影响,揭示了阻尼台影响性能的机理。研究结果表明,当存在阻尼台时,多级轴流压气机的峰值效率、峰值压比以及堵塞质量流量都会下降,其中峰值效率下降了1.6%,峰值压比下降了1.2%,堵塞质量流量下降了1.2%;尤其是第1级和第5级效率明显下降,第1级级效率下降约5.2%,第5级级效率下降约1.6%。在阻尼台存在的地方总压损失大,密流值会降低,流通能力会下降。

     

  • 图 1  多级压气机结构示意图

    Figure 1.  Schematic diagram of multi-stage compressor structure

    图 2  叶片网格拓扑结构

    Figure 2.  Blade grid topology structure

    图 3  数值模拟与实验性能曲线比较

    Figure 3.  Comparison of numerical simulation and experimental performance curves

    图 4  不同叶顶间隙方案的性能曲线对比

    Figure 4.  Comparison of performance curves of different tip clearance schemes

    图 5  最小间隙方案和最大间隙方案下各级效率对比

    Figure 5.  Comparison of each stage efficiency between the minimum tip scheme and the maximum tip scheme

    图 6  最小间隙方案和最大间隙方案的叶顶泄漏流线分布对比

    Figure 6.  Comparison of tip leakage flow line distribution between the minimum tip scheme and the maximum tip scheme

    图 7  最小间隙方案和最大间隙方案的相对马赫数云图对比

    Figure 7.  Comparison of relative Mach number contour between the minimum tip scheme and the maximum tip scheme

    图 8  阻尼台对多级压气机性能曲线的影响

    Figure 8.  Influence of damper on performance curve of multi-stage compressor

    图 9  阻尼台对多级压气机的单转子效率和各级效率的影响

    Figure 9.  Effect of damper on single rotor efficiency and each stage efficiency of multi-stage compressor

    图 10  阻尼台对多级压气机第5级转子叶片吸力面极限流线的影响对比

    Figure 10.  Comparison of influence of damper on limiting streamline of suction surface of the fifth stage rotor blade of multi-stage compressor

    图 11  五级压气机的熵增分布云图

    Figure 11.  Contour of entropy generation distribution of five-stage compressor

    图 12  第1级和第5级出口截面周向平均后的总压沿叶高方向的分布

    Figure 12.  Distribution of total pressure based on circumferential averaging at exit sections of the first and fifth stages along blade height

    图 13  第1级转子和第5级转子出口密流分布云图

    Figure 13.  Velocity density distribution contours at exit of the first and the fifth rotors

    表  1  压气机的相关设计参数

    Table  1.   Relevant design parameters of compressor

    参数数值
    设计转速/(r/min)8000
    总压比2.95
    第1级压比1.29
    第2级压比1.30
    第3级压比1.21
    第4级压比1.22
    第5级压比1.20
    R1进口马赫数1.20
    R1轮毂比0.30
    下载: 导出CSV

    表  2  不同方案下各级转子相对和绝对叶顶间隙数值

    Table  2.   Values of absolute and relative rotor tip clearances at all stages under different schemes

    转子级数叶顶间隙最小值叶顶间隙最大值叶顶间隙中间值
    相对值/%绝对值/mm相对值/%绝对值/mm相对值/%绝对值/mm
    第1级0.300.8460. 451.2920. 391.092
    第2级0.420.9960.631.4920.541.292
    第3级0.400.7780.701.3740.601.174
    第4级0.480.8260.871.5100.751.310
    第5级0.260.3900.791.2070.661.007
    下载: 导出CSV
  • [1] DENTON J D. The 1993 IGTI scholar lecture: loss mechanisms in turbomachines[J]. Journal of Turbomachinery,1993,115(4): 621-656. doi: 10.1115/1.2929299
    [2] INOUE M,KUROUMARU M. Structure of tip clearance flow in an isolated axial compressor rotor[J]. Journal of Turbomachinery,1989,111(3): 250-256. doi: 10.1115/1.3262263
    [3] SUDER K L,CELESTINA M L. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor[J]. Journal of Turbomachinery,1996,118(2): 218-229. doi: 10.1115/1.2836629
    [4] YAMADA K, KIKUTA H, FURUKAWA M, et al. Effects of tip clearance on the stall inception process in an axial compressor rotor[R]. ASME GT2013-95479, 2013.
    [5] TAN C S. Three-dimensional and tip clearance flows in compressor[R]. Brussels, Belgium: VKI Lecture Series 2006-06 on Advances in Axial Compressor Aerodynamics, 2006.
    [6] RIÉRA W,MARTY J,CASTILLON L,et al. Zonal detached-eddy simulation applied to the tip-clearance flow in an axial compressor[J]. Journal of Aircraft,2016,53(4): 2377-2391.
    [7] Chunill H. Effects of double-leakage tip clearance flow on the performance of a compressor stage with a large rotor tip gap[J]. Journal of Turbomachinery,2017,139(6): 1-9.
    [8] SOHAIL M U,HAMDANI H R,PERVEZ K H. CFD analysis of tip clearance effects on the performance of transonic axial compressor[J]. Fluid Dynamics,2020,55(1): 133-144. doi: 10.1134/S0015462820010127
    [9] 宋兆泓. 航空发动机典型故障分析[M]. 北京: 北京航空航天大学出版社, 1993.
    [10] ZHANG C,MA M,LIU D,et al. Influence analysis of blade parameters on damper coefficient of turbine damper[J]. Journal of Huazhong University of Science and Technology,2017,45(11): 98-102.
    [11] KUMAR D, BARAD S, SURESH T N. Gas turbine blade damper: a design optimization study to mitigate high resonance blade vibration[R]. ASME GTINDIA2013-3748, 2013.
    [12] SHORR B, SEREBRIAKOV N, MEL'NIKOVA G, et al. Numerical and experimental estimation of the turbine blade damper efficiency[R]. ASME GT2018-76974, 2018.
    [13] YEN H Y, SHEN M. Development of a passive turbine blade damper using magneto mechanical coating[R]. ASME 2000-GT-0366, 2000.
    [14] SZWEDOWICZ J, SECALL-WIMMEL T H, DÜNCK-KERST P. Damping performance of axial turbine stages with loosely assembled friction bolts the non-linear dynamic assessment[R]. ASME GT2007-27506, 2007.
    [15] SZWEDOWICZ J, SECALL-WIMMEL T H, REGNERY D, et al. Scaling concept for axial turbine stages with loosely assembled friction bolts the linear dynamic assessment[R]. ASME GT2007-27502, 2007.
    [16] 段连丰,董宝常,王兆龙. 凸肩对单级压气机性能的影响[J]. 工程热物理学报,1982,3(2): 123-130.

    DUAN Lianfeng,DONG Baochang,WANG Zhaolong. Effect of part span shroud on performance of a single stage compressor[J]. Journal of Engineering Thermophysics,1982,3(2): 123-130. (in Chinese)
    [17] 李洪松,刘永葆,余又红,等. 凸肩对压气机叶片振动及气动特性影响研究[J]. 热力透平,2017,46(4): 263-304. doi: 10.13707/j.cnki.31-1922/th.2017.04.007

    LI Hongsong,LIU Yongbao,YU Youhong,et al. Research on effect of shroud on vibration and aerodynamic characteristics of compressor blade[J]. Thermal Turbine,2017,46(4): 263-304. (in Chinese) doi: 10.13707/j.cnki.31-1922/th.2017.04.007
    [18] 贾朝波, 陈勇, 侯东旭, 等. 压气机转子带凸肩叶片掉块故障分析[J]. 2020, 46(4): 87-91.

    JIA Chaobo, CHEN Yong, HOU Dongxu, et al. Fracture failure analysis of a shrouded blade of compressor rotor[J]. 2020, 46(4): 87-91. (in Chinese)
    [19] 苏中亮,吴艳辉,楚武利,等. 减振阻尼台对风扇性能影响的数值仿真[J]. 计算机仿真,2010,27(7): 248-252. doi: 10.3969/j.issn.1006-9348.2010.07.061

    SU Zhongliang,WU Yanhui,CHU WuIi,et al. Numerical simulation of part span shroud effects on performance of a two-stage fan[J]. Computer Simulation,2010,27(7): 248-252. (in Chinese) doi: 10.3969/j.issn.1006-9348.2010.07.061
    [20] 杨薇. 阻尼台对轴流跨声速压气机性能的数值研究[J]. 海军航空工程学院学报,2010,25(2): 125-128. doi: 10.3969/j.issn.1673-1522.2010.02.002

    YANG Wei. Numerical investigation of effect on flow field and performance of a single-stage transonic compressor with damped setting[J]. Journal of Naval Aeronautical and Astronautical University,2010,25(2): 125-128. (in Chinese) doi: 10.3969/j.issn.1673-1522.2010.02.002
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  155
  • HTML浏览量:  84
  • PDF量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-09
  • 网络出版日期:  2022-12-23

目录

    /

    返回文章
    返回