Overall planning of aero-engine assembly based on improved flower pollination algorithm
-
摘要:
针对航空发动机结构复杂、零件数量多且装配效率低、装配成本高的问题,提出了一种改进花授粉算法(improved flower pollination algorithm, IFPA)的装配顺序优化方法。以装配优先性、装配稳定性、装配聚合性、装配重定向性和基础部件位置为影响因子构建优化目标评价体系,采用了不同的表示方案、反对立学习的初始种群生成、动态调整的转换概率,在全局授粉和局部授粉规则中引入了均匀变异和精英变异,并加入遗传突变。运用在航空发动机低压压气机装配规划上,验证了IFPA的有效性,并讨论了IFPA的参数影响,并同粒子群算法、遗传算法、蚁群算法和花授粉算法进行比较,该算法找到最优序列的概率分别提高了41%、42%、41%和20%,验证了IFPA在求解装配序列规划问题上的优越性。
Abstract:In view of the problems of complex structure, large number of parts, low assembly efficiency and high assembly cost of aero-engine, an assembly sequence optimization method based on improved flower pollination algorithm (IFPA) was proposed. The optimization target evaluation system was constructed with the influence factors of assembly priority, assembly stability, assembly aggregation, assembly redirection and basic component position. Different representation schemes, initial population generation against independent learning, and dynamically adjusted transition probability were adopted, uniform and elite variation was introduced in global and local pollination rules, and genetic mutation was added. The effectiveness of IFPA was verified by applying it to the assembly planning of aero-engine low-pressure compressor, and the parameter influence of IFPA was discussed. And compared with particle swarm algorithm, genetic algorithm, ant colony algorithm and flower pollination algorithm, the probability of finding the optimal sequence increased by 41%, 42%, 41% and 20%, respectively, which verified that IFPA can solve the assembly sequence planning superiority in question.
-
表 1 低压压气机装配信息
Table 1. Low pressure compressor assembly information
编号 零件名称 装配工具 方向 1 整流罩 T3 +z 2 螺母 T4 +z 3 第1级压气机盘 T3 +z 4 花键螺栓 T3 +z 5 第2级压气机盘 T1 +z 6 间隔衬套 T1 +z 7 第3级压气机盘 T1 +z 8 前涨圈座 T2 +z 9 前轴承 T2 +z 10 前间隔衬套 T2 +z 11 主动齿轮 T2 +z 12 后涨圈座 T2 +z 13 低压压气机轴 T1 −z 14 中介支撑轴承螺帽 T4 −z 15 涨圈座 T3 −z 16 前中介轴承 T3 −z 17 中介轴承衬套 T3 −z 18 螺母 T4 −z 表 2 不同参数对IFPA的影响
Table 2. Effect of different parameters on IFPA
种群数 步长 平均值 次数 最优值 10 1 9.5025 1 8.85 9 9.495 1 8.85 18 9.495 2 8.85 20 1 9.435 4 8.85 9 9.4175 5 8.85 18 9.39 7 8.85 50 1 9.32 12 8.85 9 9.3275 11 8.85 18 9.285 16 8.85 80 1 9.23 24 8.85 9 9.15 20 8.85 18 9.175 20 8.85 150 1 9.12 31 8.85 9 9.075 37 8.85 18 9.0775 33 8.85 200 1 9.09 39 8.85 9 9.04 43 8.35 18 9.0675 40 8.85 表 3 5种算法100次对比结果
Table 3. 100 comparison results of 5 algorithms
参数 GA PSO ACO FPA IFPA 最优适应度值 13.75 9.1 13.35 8.85 8.35 最优适应度值平均值 18.95 10.96 18.31 9.23 9.04 最优序列次数 1 2 1 23 43 获最优的概率/% 1 2 1 23 43 表 4 5种算法获得的压气机最佳序列比较
Table 4. Comparison of compressor optimal sequences obtained by five algorithms
算法 最优序列 最优
适应度值可行性
违规数装配稳定
性数装配工具
改变次数重定
向次数基础
部件值GA (13,14,7,6,5,15,12,11,9,8,
4,16,3,10,2,1,17,18)13.75 3 19 12 7 0 PSO (13,14,15,16,7,6,5,12,17,11,
18,10,9,8,4,3,2,1)9.1 0 20 10 4 0 ACO (13,14,16,6,7,15,5,17,11,18,
12,10,9,8,4,3,2,1)13.35 3 20 12 7 0 FPA (13,7,6,4,5,12,14,15,16,11,
17,18,10,9,8,3,2,1)8.85 0 20 9 4 0 IFPA (13,14,15,16,17,7,4,6,5,18,
12,11,10,9,8,3,2,1)8.35 0 20 7 4 0 -
[1] 朱梅玉,李梦奇,文学,等. 汽轮机转子动叶片装配序列智能优化[J]. 航空动力学报,2017,32(10): 2536-2543. ZHU Meiyu,LI Mengqi,WEN Xue,et al. Intelligent optimization of turbine rotor blade assembly sequence[J]. Journal of Aerospace Power,2017,32(10): 2536-2543. (in Chinese doi: 10.13224/j.cnki.jasp.2017.10.028ZHU Meiyu, LI Mengqi, WEN Xue, et al. Intelligent optimization of turbine rotor blade assembly sequence[J]. Journal of Aerospace Power, 2017, 32(10): 2536-2543. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.10.028 [2] GAO Shang,JIN Ruoyu,LU Weisheng. Design for manufacture and assembly in construction: a review[J]. Building Research & Information,2020,48(5): 538-550. [3] DEEPAK B,BALA MURALI G,BAHUBALENDRUNI M R,et al. Assembly sequence planning using soft computing methods: a review[J]. Proceedings of the Institution of Mechanical Engineers:Part E Journal of Process Mechanical Engineering,2019,233(3): 653-683. [4] BEN HADJ R,BELHADJ I,TRIGUI M,et al. Assembly sequences plan generation using features simplification[J]. Advances in Engineering Software,2018,119: 1-11. doi: 10.1016/j.advengsoft.2018.01.008 [5] ABDULLAH M A,AB RASHID M F F,GHAZALLI Z. Optimization of assembly sequence planning using soft computing approaches: a review[J]. Archives of Computational Methods in Engineering,2019,26(2): 461-474. doi: 10.1007/s11831-018-9250-y [6] 郝博,徐东平,王明阳,等. 基于改进遗传算法的机翼装配序列智能规划[J]. 组合机床与自动化加工技术,2021(6): 135-137,140. HAO Bo,XU Dongping,WANG Mingyang,et al. Intelligent planning of aircraft wing assembly sequence based on improved genetic algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique,2021(6): 135-137,140. (in Chinese doi: 10.13462/j.cnki.mmtamt.2021.06.031HAO Bo, XU Dongping, WANG Mingyang, et al. Intelligent planning of aircraft wing assembly sequence based on improved genetic algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(6): 135-137, 140. (in Chinese) doi: 10.13462/j.cnki.mmtamt.2021.06.031 [7] 黄丰云,熊雄,周铮,等. 遗传帝国竞争混合算法在装配序列规划中的研究与应用[J]. 机械设计与制造,2022(3): 266-271,275. HUANG Fengyun,XIONG Xiong,ZHOU Zheng,et al. Research and application of hybrid genetic imperial competition algorithms in assembly sequence planning[J]. Machinery Design & Manufacture,2022(3): 266-271,275. (in Chinese doi: 10.3969/j.issn.1001-3997.2022.03.056HUANG Fengyun, XIONG Xiong, ZHOU Zheng, et al. Research and application of hybrid genetic imperial competition algorithms in assembly sequence planning[J]. Machinery Design & Manufacture, 2022(3): 266-271, 275. (in Chinese) doi: 10.3969/j.issn.1001-3997.2022.03.056 [8] 王丰产,孙有朝,李娜. 多工位装配序列粒子群优化算法[J]. 机械工程学报,2012,48(9): 155-162. WANG Fengchan,SUN Youchao,LI Na. Multi Station assembly sequence planning based on particle swarm optimization algorithm[J]. Journal of Mechanical Engineering,2012,48(9): 155-162. (in Chinese doi: 10.3901/JME.2012.09.155WANG Fengchan, SUN Youchao, LI Na. Multi Station assembly sequence planning based on particle swarm optimization algorithm[J]. Journal of Mechanical Engineering, 2012, 48(9): 155-162. (in Chinese) doi: 10.3901/JME.2012.09.155 [9] 刘江伟,郭宇,查珊珊,等. 基于改进粒子群算法的多工位装配序列规划[J]. 计算机集成制造系统,2018,24(11): 2701-2711. LIU Jiangwei,GUO Yu,ZHA Shanshan,et al. Multi Station assembly sequence planning based on improved particle swarm optimization algorithm[J]. Computer Integrated Manufacturing Systems,2018,24(11): 2701-2711. (in Chinese doi: 10.13196/j.cims.2018.11.005LIU Jiangwei, GUO Yu, ZHA Shanshan, et al. Multi Station assembly sequence planning based on improved particle swarm optimization algorithm[J]. Computer Integrated Manufacturing Systems, 2018, 24(11): 2701-2711. (in Chinese) doi: 10.13196/j.cims.2018.11.005 [10] WANG J F,LIU J H,ZHONG Y F. A novel ant colony algorithm for assembly sequence planning[J]. The International Journal of Advanced Manufacturing Technology,2005,25(11): 1137-1143. [11] LU Cong,YANG Zhuo. Integrated assembly sequence planning and assembly line balancing with ant colony optimization approach[J]. The International Journal of Advanced Manufacturing Technology,2016,83(1): 243-256. [12] ZHANG Zaifang,YUAN Baoxun,ZHANG Zhinan. A new discrete double-population firefly algorithm for assembly sequence planning[J]. Proceedings of the Institution of Mechanical Engineers:Part B Journal of Engineering Manufacture,2016,230(12): 2229-2238. [13] MURALI G B,DEEPAK B B V L,BAHUBALENDRUNI M V A R,et al. Optimal assembly sequence planning using hybridized immune-simulated annealing technique[J]. Materials Today: Proceedings,2017,4(8): 8313-8322. doi: 10.1016/j.matpr.2017.07.174 [14] LI Xinyu,QIN Kai,ZENG Bing,et al. Assembly sequence planning based on an improved harmony search algorithm[J]. The International Journal of Advanced Manufacturing Technology,2016,84(9): 2367-2380. [15] LI Junying,LU Cong. Assembly sequence planning with fireworks algorithm[J]. International Journal of Modeling and Optimization,2016,6(3): 195-198. doi: 10.7763/IJMO.2016.V6.526 [16] GAO Bo,ZHANG Shichao,SUN Hao,et al. Assembly sequence planning based on adaptive gravitational search algorithm[J]. The International Journal of Advanced Manufacturing Technology,2021,115(11): 3689-3700. [17] YANG Xinshe. Flower pollination algorithm for global optimization[C]//DURAND-LOSE J,JONOSKA N. International Conference on Unconventional Computing and Natural Computation. Berlin,Heidelberg,Germany: Springer,2012: 240-249. [18] MISHRA A,DEB S. Assembly sequence optimization using a flower pollination algorithm-based approach[J]. Journal of Intelligent Manufacturing,2019,30(2): 461-482. doi: 10.1007/s10845-016-1261-7 [19] MISHRA A,DEB S. An improved hybrid flower pollination algorithm for assembly sequence optimization[J]. Assembly Automation,2019,39(1): 165-185. doi: 10.1108/AA-09-2017-112 [20] BARNES C J,JARED G E M,SWIFT K G. Decision support for sequence generation in an assembly oriented design environment[J]. Robotics and Computer-Integrated Manufacturing,2004,20(4): 289-300. doi: 10.1016/j.rcim.2003.10.013