留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短精密螺栓连接结构组合偏心预测及安装相位优化

张譍之 孙惠斌 颜诚 况侨

张譍之, 孙惠斌, 颜诚, 等. 短精密螺栓连接结构组合偏心预测及安装相位优化[J]. 航空动力学报, 2024, 39(7):20220421 doi: 10.13224/j.cnki.jasp.20220421
引用本文: 张譍之, 孙惠斌, 颜诚, 等. 短精密螺栓连接结构组合偏心预测及安装相位优化[J]. 航空动力学报, 2024, 39(7):20220421 doi: 10.13224/j.cnki.jasp.20220421
ZHANG Yingzhi, SUN Huibin, YAN Cheng, et al. Prediction of assembly eccentricity and optimization of installation phase for short precision bolted connection structures[J]. Journal of Aerospace Power, 2024, 39(7):20220421 doi: 10.13224/j.cnki.jasp.20220421
Citation: ZHANG Yingzhi, SUN Huibin, YAN Cheng, et al. Prediction of assembly eccentricity and optimization of installation phase for short precision bolted connection structures[J]. Journal of Aerospace Power, 2024, 39(7):20220421 doi: 10.13224/j.cnki.jasp.20220421

短精密螺栓连接结构组合偏心预测及安装相位优化

doi: 10.13224/j.cnki.jasp.20220421
基金项目: 国家科技重大专项(2017-Ⅶ-0010-0104); 基础科研计划(XXXX2018213A001)
详细信息
    作者简介:

    张譍之(1995—),男,博士生,主要从事航空发动机装配、数字孪生等研究

    通讯作者:

    孙惠斌(1977—),男,教授、博士生导师,博士,主要从事航空发动机装配特性预测与工艺优化、数字孪生等研究。E-mail:sun_huibin@nwpu.edu.cn

  • 中图分类号: V263.2

Prediction of assembly eccentricity and optimization of installation phase for short precision bolted connection structures

  • 摘要:

    为了有效提高短精密螺栓连接结构的装配精度,分析了两级盘组合后形心、质心偏心影响因素,阐述了两级盘配合过程中的平动转动行为和定心原理,建立了两级转子形心偏差预测模型、初始不平衡量预测模型。提出了以短精密螺栓连接的转子盘安装相位为变量,形心偏心和初始不平衡量最小为优化为目标的工艺优化模型,通过实物实验进行了验证。结果表明:形心偏差模长最大相对误差为13.28%,组合不平衡量的计算结果精度最大提高了37.3%,工艺优化结果与实验结果相符,对于短精密螺栓连接结构装配工艺优化具有重要的参考意义。

     

  • 图 1  短精密螺栓连接示意图

    Figure 1.  Diagram of short precision bolt connection

    图 2  短精密螺栓装配模型(单位:mm)

    Figure 2.  Short precision bolt assembly model (unit: mm)

    图 3  有限元仿真模型

    Figure 3.  Finite element simulation model

    图 4  提取结点的坐标数据

    Figure 4.  Extract coordinate data of the nodes

    图 5  质心与旋转轴线不重合示意图

    Figure 5.  Schematic diagram of misalignment of center of mass and axis of rotation

    图 6  两转子零件的静不平衡量

    Figure 6.  Static unbalance of two rotor parts

    图 7  考虑装配偏差的静不平衡量

    Figure 7.  Static unbalance considering assembly deviation

    图 8  转子实验件实物

    Figure 8.  Rotor test piece

    图 9  单级转子测量

    Figure 9.  Single stage rotor measurement

    图 10  转子初始不平衡量测量

    Figure 10.  Rotor initial unbalance measurement

    表  1  精密螺栓孔的偏心偏差

    Table  1.   Eccentricity deviation of precision bolt holes

    螺栓孔编号偏心距/mm偏心角/(°)
    10.020202
    20.024166
    30.01668
    40.018131
    50.020102
    60.022105
    下载: 导出CSV

    表  2  偏心计算结果

    Table  2.   Eccentricity calculation results

    X分量/mm Y分量/mm 偏心距/mm 偏心角/(°)
    0.00811 −0.00978 0.01271 −50.3512
    下载: 导出CSV

    表  3  零件B的形心坐标

    Table  3.   Part B centroid coordinates mm

    工况 X分量 Y分量
    仿真前 −1.701×10−5 −0.516×10−5
    仿真后 0.00774 −0.00956
    下载: 导出CSV

    表  4  偏心距、偏心角结果对比

    Table  4.   Comparison of eccentric distance and eccentric angle results

    参数 绝对误差 相对误差/%
    偏心距/mm 0.000 41 3.33
    偏心角/(°) 0.6528
    下载: 导出CSV

    表  5  转子零件测量数据拟合结果

    Table  5.   Fitting results of measured data of rotor parts mm

    位置 拟合中心 半径
    X分量 Y分量
    一级转
    实验件
    1号孔 139.9886 0 3.1797
    7号孔 −70.01658 −121.22245 3.1798
    13号孔 −70.00579 121.25805 3.1794
    二级转
    实验件
    1号孔 139.98860 0 3.1797
    7号孔 −70.01755 −121.24723 3.1801
    13号孔 −70.00201 121.23842 3.1802
    轴颈柱面 0.00055 −0.03252 129.49418
    下载: 导出CSV

    表  6  轴颈中心计算结果

    Table  6.   Calculation result of journal center

    方案 预测中心坐标/mm 模长/mm 相位/(°)
    X分量 Y分量
    1-1 −0.00158 −0.01772 0.01779 264.90
    1-7 0.00775 0.03607 0.03689 77.87
    1-13 −0.04349 0.01725 0.04679 158.36
    下载: 导出CSV

    表  7  转子零件初始不平衡量

    Table  7.   Initial unbalance of rotor parts

    位置 不平衡
    质量/mg
    半径/
    mm
    相位/
    (°)
    静不平衡量/
    (g·mm)
    一级转子实验件 490 104 157 50.96
    二级转子实验件 1 902 104 76 197.808
    下载: 导出CSV

    表  8  不同安装相位下第二级转子不平衡量

    Table  8.   Second-stage rotor unbalance under different installation phases

    方案 质心位置/mm 静不平衡量/(g·mm) 相位/(°)
    1-1 0.13567 197.808 76
    1-7 0.13908 202.779 183.64
    1-13 0.11100 161.838 308.21
    下载: 导出CSV

    表  9  不同安装相位组合不平衡量预测结果

    Table  9.   Combined unbalance prediction results under different installation phases

    方案 组合不平衡量/(g·mm) 相位/(°)
    1-1 211.85 89.8
    1-7 249.38 178.38
    1-13 119.72 296.38
    下载: 导出CSV

    表  10  可行解列表

    Table  10.   List of feasible solution

    可行解方案 偏心误差/mm 组合不平衡量/(g·mm)
    1-1 0.01779 211.85
    下载: 导出CSV

    表  11  轴颈中心测量结果

    Table  11.   Measurement results of journal center

    方案 拟合中心坐标/mm 模长/mm 相位/(°)
    X分量 Y分量
    1-1 −0.00351 −0.01922 0.01954 259.65
    1-7 0.01254 0.04066 0.04254 73.62
    1-13 −0.04190 0.02848 0.05066 145.80
    下载: 导出CSV

    表  12  计算结果与实验结果比较

    Table  12.   Comparing of calculated results with experimental results

    方案模长相对误差/%相位绝对误差/(°)
    1-18.965.25
    1-713.284.25
    1-137.6412.56
    下载: 导出CSV

    表  13  不平衡量测量数据

    Table  13.   Unbalance measurement data

    方案不平衡
    质量/mg
    半径/mm组合不平
    衡量/(g·mm)
    相位/(°)
    1-12036104211.74490
    1-72389248.456172
    1-1385889.232286
    下载: 导出CSV

    表  14  计算结果误差

    Table  14.   Calculation result error

    方案 不考虑装配偏差 考虑装配偏差
    不平衡量
    相对误差/%
    相位绝对
    误差/(°)
    不平衡量
    相对误差/%
    相位绝对
    误差/(°)
    1-7 3.6 16.30 0.4 6.38
    1-13 69.5 23.40 34.2 10.38
    下载: 导出CSV

    表  15  优化结果对比

    Table  15.   Optimization results comparison

    项目 方案1-1预测值 方案1-1实测值 误差
    偏心量 模长 0.01779 mm 0.01954 mm 8.96%
    相位/(°) 264.9 259.65 5.25
    组合不平
    衡量
    数值 211.85 g·mm 211.744 g·mm 0.4%
    相位/(°) 89.8 90 0.2
    下载: 导出CSV
  • [1] 陈光,洪杰,马艳红. 航空燃气涡轮发动机结构[M]. 北京: 北京航空航天大学出版社,2010.
    [2] 张渝,李琳,陈津,等. 航空发动机重要装配工艺分析及研发展望[J]. 航空制造技术,2019,62(15): 14-21. ZHANG Yu,LI Lin,CHEN Jin,et al. Research Current status and prospect on aero-engine assembly process technology[J]. Aeronautical Manufacturing Technology,2019,62(15): 14-21. (in Chinese doi: 10.16080/j.issn1671-833x.2019.15.014

    ZHANG Yu, LI Lin, CHEN Jin, et al. Research Current status and prospect on aero-engine assembly process technology[J]. Aeronautical Manufacturing Technology, 2019, 62(15): 14-21. (in Chinese) doi: 10.16080/j.issn1671-833x.2019.15.014
    [3] 章伊华,庞奎,林丹益,等. 基于接触面特征的螺栓联接刚度研究[J]. 兵工学报,2017,38(1): 195-201. ZHANG Yihua,PANG Kui,LIN Danyi,et al. Study of bolt joint stiffness based on contact surface characteristics[J]. Acta Armamentarii,2017,38(1): 195-201. (in Chinese

    ZHANG Yihua, PANG Kui, LIN Danyi, et al. Study of bolt joint stiffness based on contact surface characteristics[J]. Acta Armamentarii, 2017, 38(1): 195-201. (in Chinese)
    [4] 焦俊杰,莫蓉,徐广庆,等. 螺栓孔的位置度误差对短精密螺栓连接结构装配力学特性的影响[J]. 航空动力学报,2021,36(5): 935-947. JIAO Junjie,MO Rong,XU Guangqing,et al. Influence of position error of bolt hole on assembly mechanical characteristics of short precision bolted connection structure[J]. Journal of Aerospace Power,2021,36(5): 935-947. (in Chinese

    JIAO Junjie, MO Rong, XU Guangqing, et al. Influence of position error of bolt hole on assembly mechanical characteristics of short precision bolted connection structure[J]. Journal of Aerospace Power, 2021, 36(5): 935-947. (in Chinese)
    [5] 李泽林. 基于轴向预载的转子装配方法研究[D]. 哈尔滨: 哈尔滨工业大学,2018. LI Zelin. Research on rotor assembly method based on axial compression[D]. Harbin: Harbin Institute of Technology,2018. (in Chinese

    LI Zelin. Research on rotor assembly method based on axial compression[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [6] LI X D,CHEN J,SUN K P,et al. Research on pre-tensioning process of low-pressure turbine shaft assembly for aeroengines considering the rabbet joint structure[J]. International Journal of Smart Engineering,2019,3(1): 23-34.
    [7] DING Siyi,JIN Sun,LI Zhimin,et al. Multistage rotational optimization using unified Jacobian–Torsor model in aero-engine assembly[J]. Proceedings of the Institution of Mechanical Engineers:Part B Journal of Engineering Manufacture,2019,233(1): 251-266.
    [8] 丁司懿,金隼,李志敏,等. 航空发动机转子装配同心度的偏差传递模型与优化[J]. 上海交通大学学报,2018,52(1): 54-62. DING Siyi,JIN Sun,LI Zhimin,et al. Deviation propagation model and optimization of concentricity for aero-engine rotor assembly[J]. Journal of Shanghai Jiao Tong University,2018,52(1): 54-62. (in Chinese

    DING Siyi, JIN Sun, LI Zhimin, et al. Deviation propagation model and optimization of concentricity for aero-engine rotor assembly[J]. Journal of Shanghai Jiao Tong University, 2018, 52(1): 54-62. (in Chinese)
    [9] 高一超. 航空发动机转子装配精度预测及相位优化方法研究[D]. 辽宁 大连: 大连理工大学,2020: 42-48. GAO Yichao. Research on accuracy prediction and phase optimization of aeroengine rotor assembly[D]. Dalian Liaoning: Dalian University of Technology,2020: 42-48. (in Chinese

    GAO Yichao. Research on accuracy prediction and phase optimization of aeroengine rotor assembly[D]. Dalian Liaoning: Dalian University of Technology, 2020: 42-48. (in Chinese)
    [10] 张伟,陈爽,杜双言,等. 制造误差对航发转子同心度的影响[J]. 现代制造技术与装备,2021,57(8): 26-29. ZHANG Wei,CHEN Shuang,DU Shuangyan,et al. Effecet of manufacturing error on the concentricity of aero engine rotor[J]. Modern Manufacturing Technology and Equipment,2021,57(8): 26-29. (in Chinese

    ZHANG Wei, CHEN Shuang, DU Shuangyan, et al. Effecet of manufacturing error on the concentricity of aero engine rotor[J]. Modern Manufacturing Technology and Equipment, 2021, 57(8): 26-29. (in Chinese)
    [11] ZHANG W,YE Y S,CHEN D A,et al. Numerical analysis of bolt elastic interaction in non-gasketed flange[R]. Prague,Czech: ASME 2018 Pressure Vessels and Piping Conference,2018.
    [12] 叶永松. 考虑实际接触的螺栓止口连接预紧力及其变形研究[D]. 辽宁 大连: 大连理工大学,2019: 44-48. YE Yongsong. Study on pre-tightening force and deformation of bolted connection with rabbet considering actual contact[D]. Dalian Liaoning: Dalian University of Technology,2019: 44-48. (in Chinese

    YE Yongsong. Study on pre-tightening force and deformation of bolted connection with rabbet considering actual contact[D]. Dalian Liaoning: Dalian University of Technology, 2019: 44-48. (in Chinese)
    [13] 张子豪,郭俊康,洪军,等. 航空发动机高压转子装配偏心预测和相位优化的智能算法应用研究[J]. 西安交通大学学报,2021,55(2): 47-54. ZHANG Zihao,GUO Junkang,HONG Jun,et al. Application study of intelligent algorithms for prediction and phase optimization of assembly eccentricity of aero-engine high pressure rotor[J]. Journal of Xi’an Jiaotong University,2021,55(2): 47-54. (in Chinese

    ZHANG Zihao, GUO Junkang, HONG Jun, et al. Application study of intelligent algorithms for prediction and phase optimization of assembly eccentricity of aero-engine high pressure rotor[J]. Journal of Xi’an Jiaotong University, 2021, 55(2): 47-54. (in Chinese)
    [14] 陈爽. 螺栓-止口连接的安装边制造误差对装配性能的影响研究[D]. 辽宁 大连: 大连理工大学,2021: 31-38. CHEN Shuang. Research on the influence of manufacturing error of mounting edge of bolt-stop connection on the assembly performance[D]. Dalian Liaoning: Dalian University of Technology,2021: 31-38. (in Chinese

    CHEN Shuang. Research on the influence of manufacturing error of mounting edge of bolt-stop connection on the assembly performance[D]. Dalian Liaoning: Dalian University of Technology, 2021: 31-38. (in Chinese)
    [15] 侯博文. 真实接触表面形貌下螺栓连接结构的力学性能[D]. 辽宁 大连: 大连理工大学,2020: 25-38. HOU Bowen. Mechanical properties of bolted connection structure under real contact surface topography[D]. Dalian Liaoning: Dalian University of Technology,2020: 25-38. (in Chinese

    HOU Bowen. Mechanical properties of bolted connection structure under real contact surface topography[D]. Dalian Liaoning: Dalian University of Technology, 2020: 25-38. (in Chinese)
    [16] HOU B W,SUN Y D,SUN W,et al. The properties of bolted joint assembly with contact stiffness[J]. International Journal of Smart Engineering,2018,2(3): 325-342.
    [17] WANG Xiaoming,CAO Zifei,SUN Chuanzhi,et al. Positioning and orientation error measurement and assembly coaxiality optimization in rotors with curvic couplings[J]. Measurement,2021,186: 110167. doi: 10.1016/j.measurement.2021.110167
    [18] 刘鑫. 航空发动机转子装配精度预测及堆叠[D]. 辽宁 大连: 大连理工大学,2019: 30-34. LIU Xin. Assembly accuracy prediction and stacking of aeroengine rotor[D]. Dalian Liaoning: Dalian University of Technology,2019: 30-34. (in Chinese

    LIU Xin. Assembly accuracy prediction and stacking of aeroengine rotor[D]. Dalian Liaoning: Dalian University of Technology, 2019: 30-34. (in Chinese)
    [19] 琚奕鹏,吴法勇,金彬,等. 基于转子跳动和初始不平衡量优化的多级盘转子结构装配工艺[J]. 航空发动机,2018,44(6): 83-90. JU Yipeng,WU Fayong,JIN Bin,et al. Structure assembly technique of multi-stage disc rotor based on rotor runout and unbalance optimization[J]. Aeroengine,2018,44(6): 83-90. (in Chinese

    JU Yipeng, WU Fayong, JIN Bin, et al. Structure assembly technique of multi-stage disc rotor based on rotor runout and unbalance optimization[J]. Aeroengine, 2018, 44(6): 83-90. (in Chinese)
    [20] 刘君,吴法勇,王娟. 航空发动机转子装配优化技术[J]. 航空发动机,2014,40(3): 75-78. LIU Jun,WU Fayong,WANG Juan. Optimization technique of aeroengine rotor assembly[J]. Aeroengine,2014,40(3): 75-78. (in Chinese doi: 10.13477/j.cnki.aeroengine.2014.03.016

    LIU Jun, WU Fayong, WANG Juan. Optimization technique of aeroengine rotor assembly[J]. Aeroengine, 2014, 40(3): 75-78. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2014.03.016
    [21] 刘洪慧,刘亮,李明华,等. 多级盘转子装配不平衡量预测与优化[J]. 机械科学与技术,2022,41(8): 1298-1305. LIU Honghui,LIU Liang,LI Minghua,et al. Prediction and optimization of assembly unbalance of multi-stage disc rotor[J]. Mechanical Science and Technology for Aerospace Engineering,2022,41(8): 1298-1305. (in Chinese

    LIU Honghui, LIU Liang, LI Minghua, et al. Prediction and optimization of assembly unbalance of multi-stage disc rotor[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(8): 1298-1305. (in Chinese)
    [22] LIU Yongmeng,ZHANG Maowei,SUN Chuanzhi,et al. A method to minimize stage-by-stage initial unbalance in the aero engine assembly of multistage rotors[J]. Aerospace Science and Technology,2019,85: 270-276. doi: 10.1016/j.ast.2018.12.007
    [23] CHEN Yue,CUI Jiwen,SUN Xun. An unbalance optimization method for a multi-stage rotor based on an assembly error propagation model[J]. Applied Sciences,2021,11(2): 887. doi: 10.3390/app11020887
    [24] CHEN Yue,CUI Jiwen,SUN Xun. A vibration suppression method for the multistage rotor of an aero-engine based on assembly optimization[J]. Machines,2021,9(9): 189. doi: 10.3390/machines9090189
    [25] 涂建波,李震,葛浩田,等. 基于几何代数理论的转子堆叠装配多目标优化[J]. 航空学报,2021,42(10): 524197. TU Jianbo,LI Zhen,GE Haotian,et al. Multi-objective optimization of rotor-stack assembly based on geometric algebra theory[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10): 524197. (in Chinese

    TU Jianbo, LI Zhen, GE Haotian, et al. Multi-objective optimization of rotor-stack assembly based on geometric algebra theory[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524197. (in Chinese)
  • 加载中
图(10) / 表(15)
计量
  • 文章访问数:  87
  • HTML浏览量:  56
  • PDF量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 网络出版日期:  2023-12-26

目录

    /

    返回文章
    返回