留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温风洞排气塔流致振动的理论及数值研究

张伟 高鑫鑫 高荣 张小斌 程俊

张伟, 高鑫鑫, 高荣, 等. 低温风洞排气塔流致振动的理论及数值研究[J]. 航空动力学报, 2024, 39(7):20220422 doi: 10.13224/j.cnki.jasp.20220422
引用本文: 张伟, 高鑫鑫, 高荣, 等. 低温风洞排气塔流致振动的理论及数值研究[J]. 航空动力学报, 2024, 39(7):20220422 doi: 10.13224/j.cnki.jasp.20220422
ZHANG Wei, GAO Xinxin, GAO Rong, et al. Theoretical and numerical study on flow-induced vibration of exhaust tower in a cryogenic wind tunnel[J]. Journal of Aerospace Power, 2024, 39(7):20220422 doi: 10.13224/j.cnki.jasp.20220422
Citation: ZHANG Wei, GAO Xinxin, GAO Rong, et al. Theoretical and numerical study on flow-induced vibration of exhaust tower in a cryogenic wind tunnel[J]. Journal of Aerospace Power, 2024, 39(7):20220422 doi: 10.13224/j.cnki.jasp.20220422

低温风洞排气塔流致振动的理论及数值研究

doi: 10.13224/j.cnki.jasp.20220422
基金项目: 中国空气动力研究与发展中心基础和前沿技术研究基金探索项目(PJD20200240)
详细信息
    作者简介:

    张伟(1988-),男,工程师,硕士,主要从事低温两相流及流固耦合研究

    通讯作者:

    程俊(1984-),男,工程师,硕士,主要从事低温系统设计方面的研究。E-mail:chengjun@cardc.cn

  • 中图分类号: V211

Theoretical and numerical study on flow-induced vibration of exhaust tower in a cryogenic wind tunnel

  • 摘要:

    为分析排气塔在自然风载和内流共同作用下的结构安全性,采用理论和数值模拟方法分析了排气塔的流致振动响应情况。理论分析获得了排气塔在自然风载作用下的顺流响应和均值响应。采用计算流体力学方法,shear stress transport (SST)k-ω湍流模型和动网格数值技术实现了排气塔的双向流固耦合数值模拟,获得了排气塔在内外流动混合作用下的速度、压力和涡量分布。表明排气塔在特定风载下的旋涡脱落频率接近1阶模态频率,塔体应力较小,在许用应力范围内。

     

  • 图 1  排气塔三维模型(单位:m)

    Figure 1.  3D model of exhaust tower (unit:m)

    图 2  几何模型和流场布置

    Figure 2.  Geometry model and flow field distribution

    图 3  圆柱绕流区域网格分布

    Figure 3.  Mesh distribution at zone around cylinder

    图 4  t=4.42 s时x=0平面速度分布

    Figure 4.  Velocity distribution at plane x=0 at t=4.42 s

    图 5  t=4.42 s时z=31 m平面涡量分布

    Figure 5.  Vorticity distribution at plane z=31 m at t=4.42 s

    图 6  t=4.42 s时z=31 m平面流线分布

    Figure 6.  Streamline distribution at plane z=31 m at t=4.42 s

    图 7  外流场中的涡结构(λ2等值面)

    Figure 7.  Vortex structure in outside fluid zone (isosurface of λ2

    图 8  涡结构局部特征(λ2等值面)

    Figure 8.  Local feature of vortex structure (isosurface of λ2

    图 9  不同高度的速度变化

    Figure 9.  Velocity variation at different altitudes

    图 10  模拟与试验值的St对比

    Figure 10.  St comparison between simulation and experiment

    图 11  排气塔顶部变形随时间变化

    Figure 11.  Variation of displacement of venting tower with time

    图 12  排气塔顶部沿x方向变形随时间变化

    Figure 12.  Variation of displacement at x direction of venting tower with time

    图 13  排气塔顶部沿y方向变形随时间变化

    Figure 13.  Variation of displacement at y direction of venting tower with time

    图 14  沿y方向变形(未排气)

    Figure 14.  Displacement at y direction (without venting)

    图 15  变形运动轨迹

    Figure 15.  Deformation trajectory

    图 16  等效应力随时间变化

    Figure 16.  Variation of equivalent stress with time

    图 17  排气塔局部应力分布

    Figure 17.  Local stress distribution of venting tower

    表  1  排气塔振动模态频率

    Table  1.   Vibration modal frequency of exhaust tower

    模态 频率/Hz 模态 频率/Hz
    1 1.9587 4 12.027
    2 1.9684 5 15.270
    3 11.999 6 16.057
    下载: 导出CSV
  • [1] 邱雅柔,唐迪,包士毅,等. 风诱导塔振动对塔气动特性影响研究[J]. 机械工程学报,2018,54(20): 106-114. QIU Yarou,TANG Di,BAO Shiyi,et al. Study of the wind-induced tower vibrations affect on aerodynamic characteristics[J]. Journal of Mechanical Engineering,2018,54(20): 106-114. (in Chinese doi: 10.3901/JME.2018.20.106

    QIU Yarou, TANG Di, BAO Shiyi, et al. Study of the wind-induced tower vibrations affect on aerodynamic characteristics[J]. Journal of Mechanical Engineering, 2018, 54(20): 106-114. (in Chinese) doi: 10.3901/JME.2018.20.106
    [2] 张伟伟,豆子皓,李新涛,等. 桥梁若干流致振动与卡门涡街[J]. 空气动力学学报,2020,38(3): 405-412. ZHANG Weiwei,DOU Zihao,LI Xintao,et al. Various flow-induced vibrations of bridges and von Kármán vortex street[J]. Acta Aerodynamica Sinica,2020,38(3): 405-412. (in Chinese

    ZHANG Weiwei, DOU Zihao, LI Xintao, et al. Various flow-induced vibrations of bridges and von Kármán vortex street[J]. Acta Aerodynamica Sinica, 2020, 38(3): 405-412. (in Chinese)
    [3] LUO Nan,LIANG Ai,LIAO Hai,et al. Wind tunnel investigations for the free standing tower of the Penang second bridge[J]. Applied Mechanics and Materials,2012,256/257/258/259: 1577-1581.
    [4] MARRA A M,MANNINI C,BARTOLI G. Wind tunnel modeling for the vortex-induced vibrations of a yawed bridge tower[J]. Journal of Bridge Engineering,2017,22(5): 04017006. doi: 10.1061/(ASCE)BE.1943-5592.0001028
    [5] FANG Chen,WANG Zewen,TANG Haojun,et al. Vortex-induced vibration of a tall bridge tower with four columns and the wake effects on the nearby suspenders[J]. International Journal of Structural Stability and Dynamics,2020,20(9): 2050105. doi: 10.1142/S0219455420501059
    [6] BELLOLI M,ROSA L,ZASSO A. Wind loads and vortex shedding analysis on the effects of the porosity on a high slender tower[J]. Journal of Wind Engineering and Industrial Aerodynamics,2014,126: 75-86. doi: 10.1016/j.jweia.2014.01.004
    [7] 陈旭,黄珑霆,丁福祥,等. 超大型冷却塔龙卷风作用塔筒內表面风荷载特性研究[J]. 振动与冲击,2021,40(21): 31-38. CHEN Xu,HUANG Longting,DING Fuxiang,et al. Characteristics of wind load on inner surface of super large cooling tower under tornado action[J]. Journal of Vibration and Shock,2021,40(21): 31-38. (in Chinese

    CHEN Xu, HUANG Longting, DING Fuxiang, et al. Characteristics of wind load on inner surface of super large cooling tower under tornado action[J]. Journal of Vibration and Shock, 2021, 40(21): 31-38. (in Chinese)
    [8] DENG H Z,JIANG Q,LI F,et al. Vortex-induced vibration tests of circular cylinders connected with typical joints in transmission towers[J]. Journal of Wind Engineering and Industrial Aerodynamics,2011,99(10): 1069-1078. doi: 10.1016/j.jweia.2011.07.005
    [9] 李杨,兰涌森,李强,等. 风力机塔架结构振动控制研究及方法综述[J]. 船舶工程,2020,42(增刊2): 248-253. LI Yang,LAN Yongsen,LI Qiang,et al. Research and method summary on vibration control of wind turbine tower structure[J]. Ship Engineering,2020,42(Suppl.2): 248-253. (in Chinese

    LI Yang, LAN Yongsen, LI Qiang, et al. Research and method summary on vibration control of wind turbine tower structure[J]. Ship Engineering, 2020, 42(Suppl.2): 248-253. (in Chinese)
    [10] NGUYEN C U,LEE S Y,HUYNH T C,et al. Vibration characteristics of offshore wind turbine tower with gravity-based foundation under wave excitation[J]. Smart Structures and Systems,2019,23(5): 405-420.
    [11] 杨冬宝,高俊松,刘建平,等. 基于DEM-FEM耦合方法的海上风机结构冰激振动分析[J]. 力学学报,2021,53(3): 682-692. YANG Dongbao,GAO Junsong,LIU Jianping,et al. Analysis of ice-inducted structure vibration of offshore wind turbines based on dem-fem coupled method[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(3): 682-692. (in Chinese

    YANG Dongbao, GAO Junsong, LIU Jianping, et al. Analysis of ice-inducted structure vibration of offshore wind turbines based on dem-fem coupled method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 682-692. (in Chinese)
    [12] 康友良. 变截面钢桥塔涡激振动风洞试验和数值模拟研究[D]. 长沙: 长沙理工大学,2019. KANG Youliang. Wind tunnel test and numerical simulation study on the vortex-induced vibration of steel bridge tower with variable section[D]. Changsha: Changsha University of Science & Technology,2019. (in Chinese

    KANG Youliang. Wind tunnel test and numerical simulation study on the vortex-induced vibration of steel bridge tower with variable section[D]. Changsha: Changsha University of Science & Technology, 2019. (in Chinese)
    [13] 陈文礼,黄业伟,孟昊,等. 桥塔尾流风作用下吊索尾流致振动模型与参数分析[J]. 中国公路学报,2022,35(4): 117-127. CHEN Wenli,HUANG Yewei,MENG Hao,et al. Motion model and parameter analysis of flow-induced vibration of suspender in bridge tower wake[J]. China Journal of Highway and Transport,2022,35(4): 117-127. (in Chinese

    CHEN Wenli, HUANG Yewei, MENG Hao, et al. Motion model and parameter analysis of flow-induced vibration of suspender in bridge tower wake[J]. China Journal of Highway and Transport, 2022, 35(4): 117-127. (in Chinese)
    [14] BALAJI G,PILLAI S N,KUMAR C S. Wind tunnel investigation of downstream wake characteristics on circular cylinder with various taper ratios[J]. Journal of Applied Fluid Mechanics,2017,10(SI): 69-77.
    [15] 樊显涛,唐博文,谭蔚. 并排塔器流致振动特性及预测模型研究[C]//压力容器先进技术——第十届全国压力容器学术会议论文集(上). 杭州: 中国机械工程学会压力容器分会,2021: 739-748.
    [16] 刘友宏,丁玉林,周开福,等. 光滑塔器烟囱诱导振动研究[J]. 科学技术与工程,2015,15(13): 1-6. LIU Youhong,DING Yulin,ZHOU Kaifu,et al. Induced vibration of smooth chimney tower[J]. Science Technology and Engineering,2015,15(13): 1-6. (in Chinese

    LIU Youhong, DING Yulin, ZHOU Kaifu, et al. Induced vibration of smooth chimney tower[J]. Science Technology and Engineering, 2015, 15(13): 1-6. (in Chinese)
    [17] 王元兴,聂旭涛,麻越垠,等. 高压气流管道瞬态冲击振动分析及抑振研究[J]. 振动、测试与诊断,2021,41(4): 812-817,838. WANG Yuanxing,NIE Xutao,MA Yueyin,et al. Structural vibration analysis and suppression technique of high-pressure transient impact airflow pipeline system[J]. Journal of Vibration,Measurement & Diagnosis,2021,41(4): 812-817,838. (in Chinese

    WANG Yuanxing, NIE Xutao, MA Yueyin, et al. Structural vibration analysis and suppression technique of high-pressure transient impact airflow pipeline system[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(4): 812-817, 838. (in Chinese)
    [18] NIE Xutao,LIU Zongzheng,QIN Chaojin,et al. Numerical study on flow-induced vibration of ejector structure[J]. Transactions of Nanjing University of Aeronautics and Astronautics,2019,36(5): 769-778.
    [19] WEI A B,GAO R,ZHANG X B,et al. CFD analysis of the flow-induced vibration of a cryogenic poppet valve in consideration of the cavitation effect[J]. Journal of Zhejiang University: Science A (Applied Physics & Engineering),2022,23(2): 83-100.
    [20] 张伟,孙德文,陈万华,等. 基于AMESim的液氮供给系统液击仿真[J]. 航空动力学报,2022,37(2): 366-374. ZHANG Wei,SUN Dewen,CHEN Wanhua,et al. Simulation of water hammer in liquid nitrogen supplying system based on AMESim[J]. Journal of Aerospace Power,2022,37(2): 366-374. (in Chinese

    ZHANG Wei, SUN Dewen, CHEN Wanhua, et al. Simulation of water hammer in liquid nitrogen supplying system based on AMESim[J]. Journal of Aerospace Power, 2022, 37(2): 366-374. (in Chinese)
    [21] LEE H J,OH S J,JOO J J,et al. Propagation of thermally induced oscillation in the KSTAR cryogenic loop[J]. Fusion Engineering and Design,2016,109/110/111: 942-946.
    [22] LI Jingfeng,WANG Kai,ZHANG Xiaobin,et al. A parametric sensitivity study by numerical simulations on plume dispersion of the exhaust from a cryogenic wind tunnel[J]. Journal of Zhejiang University: Science A,2018,19(10): 746-757. doi: 10.1631/jzus.A1700632
    [23] BLEVINS R D. 流动诱发振动[M]. 机械工业出版社出版,1983.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  63
  • HTML浏览量:  19
  • PDF量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 网络出版日期:  2023-12-26

目录

    /

    返回文章
    返回