留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷嘴防积碳结构对燃油分布的影响

张荣幸 杨大伟 马柱 张书豪 戴金鑫 王良

张荣幸, 杨大伟, 马柱, 等. 喷嘴防积碳结构对燃油分布的影响[J]. 航空动力学报, 2023, 38(3):588-595 doi: 10.13224/j.cnki.jasp.20220444
引用本文: 张荣幸, 杨大伟, 马柱, 等. 喷嘴防积碳结构对燃油分布的影响[J]. 航空动力学报, 2023, 38(3):588-595 doi: 10.13224/j.cnki.jasp.20220444
ZHANG Rongxing, YANG Dawei, MA Zhu, et al. Effect of anti-carbon deposition structure on fuel distribution of nozzle[J]. Journal of Aerospace Power, 2023, 38(3):588-595 doi: 10.13224/j.cnki.jasp.20220444
Citation: ZHANG Rongxing, YANG Dawei, MA Zhu, et al. Effect of anti-carbon deposition structure on fuel distribution of nozzle[J]. Journal of Aerospace Power, 2023, 38(3):588-595 doi: 10.13224/j.cnki.jasp.20220444

喷嘴防积碳结构对燃油分布的影响

doi: 10.13224/j.cnki.jasp.20220444
基金项目: 国家科技重大专项(2017 -Ⅲ-0002-0026)
详细信息
    作者简介:

    张荣幸(1991-),女,工程师,硕士,从事航空发动机燃烧室设计工作

  • 中图分类号: V231.2+3

Effect of anti-carbon deposition structure on fuel distribution of nozzle

  • 摘要:

    针对航空发动机双油路喷嘴,采用试验和数值计算方法研究了不同防积碳结构对燃油分布的影响。采用光学分布式喷雾检测系统进行燃油分布测量试验,获取了不同防积碳喷嘴出口下游20 mm截面的锥角、周向分布和径向分布;并采用volume of fluid(VOF)仿真方法对不同防积碳结构的喷嘴进行了数值仿真研究。结果表明:相同供油压差下,喷嘴匹配防积碳结构后,喷雾锥角和燃油径向分布的峰值半径减小,小半径区域燃油分布占比升高。计算结果与试验结果符合较好,有效解释了防积碳气流对喷嘴燃油分布的影响。同一工况下,喷嘴匹配不同防积碳结构时,锥角的大小与喷口端面中心孔的气流速度相关,而周向分布主要与气液比相关。

     

  • 图 1  带防积碳结构的双油路喷嘴示意图

    Figure 1.  Schematic of double-way nozzle with anti-carbon deposition structure

    图 2  试验系统示意图

    Figure 2.  Schematic view of experimental facility system

    图 3  测量系统示意图

    Figure 3.  Schematic view of measurement system

    图 4  计算域的三维网格

    Figure 4.  Three-dimensional grid of the computational domain

    图 5  燃油分布试验结果

    Figure 5.  Experiment results of fuel distribution

    图 6  喷雾锥角的试验结果和计算结果

    Figure 6.  Experiment and simulation results of spray cone angle

    图 7  不同模型的径向分布试验结果对比

    Figure 7.  Comparison of radial distribution experiment results of different models

    图 8  不同模型的周向分布试验结果对比

    Figure 8.  Experiment result comparison of circumferential distribution between different models

    图 9  不同模型的仿真结果对比(相界面分数为0.25)

    Figure 9.  Simulation results comparison between different models (phase interface fraction 0.25)

    图 10  不同模型的速度及流场对比

    Figure 10.  Velocity and flow pattern comparison between different models

    图 11  不同模型的径向分布计算结果对比

    Figure 11.  Comparison of radial distribution simulation results of different models

    表  1  防积碳结构设计参数

    Table  1.   Design parameters of anti-carbon deposition structure

    参数Model AModel BModel CModel D
    $ {n}_{\mathrm{a}1} $6121212
    $ {D}_{\mathrm{a}\mathrm{o}1}/d $5.05.04.35.0
    $ {n}_{\mathrm{a}\mathrm{o}2} $1212
    $ {D}_{\mathrm{a}\mathrm{o}2}/d $1.00.6
    下载: 导出CSV

    表  2  研究工况

    Table  2.   Working condition of rasearch

    参数对比工况设计工况
    ${\Delta p}_{ {\rm{f} } }$/MPa2.22.2
    ${\Delta p}_{ {\rm{a} } }$/kPa012
    下载: 导出CSV

    表  3  设计工况下不同防积碳结构的气液比

    Table  3.   AFR of different anti-carbon deposition structure under design condition

    模型气液比
    Model A0.07
    Model B0.10
    Model C0.14
    Model D0.13
    下载: 导出CSV
  • [1] 林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社, 2008.
    [2] 《航空发动机手册》总编委会. 航空发动机设计手册: 第9分册 主燃烧室[M]. 北京: 航空工业出版社, 2000.
    [3] BRANDAUER M,SCHULZ A,SWITTIG S. Mechanisms of coke formation in gas turbine combustion chambers[J]. Journal of Engineering for Gas Turbines and Power,1996,118(2): 265-270. doi: 10.1115/1.2816587
    [4] CHRISTOPHER O. Formation mechanisms of combustion chamber deposits[D]. Boston: Massachusetts Institute of Technology, 2001.
    [5] 刘天池,范育新,吴伟秋,等. 不同几何结构对燃油喷嘴热防护特性的影响[J]. 航空动力学报,2020,35(8): 1628-1642. doi: 10.13224/j.cnki.jasp.2020.08.008

    LIU Tianchi,FAN Yuxin,WU Weiqiu,et al. Influence of different geometric structures on thermal protection characteristics of fuel nozzle[J]. Journal of Aerospace Power,2020,35(8): 1628-1642. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.08.008
    [6] 刘子超, 赵云惠. 液雾及颗粒的激光测量原理[M]. 北京: 宇航出版社, 1988.
    [7] DURST F,BRENN G,XU T H. A review of the development and characteristics of planar phase-doppler anemometry[J]. Measurement Science and Technology,1997,33(1): 315-323.
    [8] 陈溯敏,姜磊,王彤,等. 旋流杯结构对燃油雾化粒径的影响[J]. 航空动力学报,2021,36(12): 2568-2577. doi: 10.13224/j.cnki.jasp.20200547

    CHEN Sumin,JIANG Lei,WANG Tong,et al. Effects of swirl cup structure on fuel atomization partical size of fuel[J]. Journal of Aerospace Power,2021,36(12): 2568-2577. (in Chinese) doi: 10.13224/j.cnki.jasp.20200547
    [9] LIU X,QI Z,MA Q,et al. Limiting explosible concentration of hydrogen-oxygen-helium mixtures related to the practical operational case[J]. Journal of Loss Prevention in the Process Industries,2014,29(1): 240-244.
    [10] 刘存喜. 多级旋流空气雾化喷嘴雾化特性及光学测试方法研究[D]. 北京: 中国科学院工程热物理研究所, 2012.

    LIU Cunxi. Investigations of spray characteristics and optical measuring methods for multi-swirl air-blast atomizer[D]. Beijing: Institute of Engineering Thermophysics Chinese Academy of Sciences, 2012. (in Chinese)
    [11] 桂韬,夏丽敏,邱伟,等. 旋流器型式对空气雾化喷嘴雾化特性影响规律[J]. 航空动力学报,2022,37(3): 465-477.

    GUI Tao,XIA Limin,QIU Wei,et al. Effects of swirl cup structure on fuel atomization partical size of fuel[J]. Journal of Aerospace Power,2022,37(3): 465-477. (in Chinese)
    [12] 乔卿贝. 航空发动机组合式喷嘴高温高压雾化特性研究[D]. 北京: 中国科学院大学, 2021.

    QIAO Qingbei. Investigations of spray characteristics for combined air-atomizer of aircraft engine in high temperature and high pressure[D]. Beijing: Institute of Engineering Thermophysics Chinese Academy of Sciences, 2021. (in Chinese)
    [13] MENARD T, TANGUY S, BERLEMONT A. Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet[J]. International Journal of Multiphase Flow,2007,33(5): 510-524.
    [14] DESJARDINS O, MOUREAU V, PITSCH H. An accurate conservative level set/ghost fluid method for simulating turbulent atomization[J]. Jouranal of Computational Physics, 2008, 227 (18): 8395-8416.
    [15] SIAMAS G A,JIANG X,WROBEL L C. Numerical investigation of a perturbed swirling annular two-phase jet[J]. International Journal of Heat and Fluid Flow,2009,30(3): 481-493. doi: 10.1016/j.ijheatfluidflow.2009.02.020
    [16] SHINJO J,UMEMURA A. Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation[J]. International Journal of Multiphase Flow,2010,36(7): 513-532. doi: 10.1016/j.ijmultiphaseflow.2010.03.008
    [17] 刘娟,孙明波,李清廉,等. 基于VOF方法模拟离心式喷嘴内部流动过程[J]. 航空动力学报,2011,26(9): 1986-1994. doi: 10.13224/j.cnki.jasp.2011.09.016

    LIU Juan,SUN Mingbo,LI Qinglian,et al. Numerical simulation of flow field in pressure-swirl injector based on VOF interface tracking method[J]. Journal of Aerospace Power,2011,26(9): 1986-1994. (in Chinese) doi: 10.13224/j.cnki.jasp.2011.09.016
    [18] ISHIMOTO J. Integrated simulation of the atomization process of a liquid jet through a cylindrical nozzle[J]. Interdisciplinary Information Sciences,2007,3(1): 7-16.
    [19] 宫冠吉. 低压大剪切混合流燃油雾化和油气空间分布特性研究[D]. 南京: 南京航空航天大学, 2018.

    GONG Guanji. Investigation on atomization and fuel-air spatial distribution characteristics in large gradient shear mixing flow with low pressure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [20] 张书铭. 燃油喷嘴气液两相雾化过程与特性的数值研究[D]. 南京: 南京航空航天大学, 2019.

    ZHANG Shuming. The numerical study on the performance of gas-liquid two-phase atomization of fuel injector[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  166
  • HTML浏览量:  81
  • PDF量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 网络出版日期:  2023-02-08

目录

    /

    返回文章
    返回