留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同来流附面层厚度下容腔泄漏流对围带式静叶性能影响

孔晓治 黄天硕 刘育心 王成泽 陆华伟

孔晓治, 黄天硕, 刘育心, 等. 不同来流附面层厚度下容腔泄漏流对围带式静叶性能影响[J]. 航空动力学报, 2023, 38(1):184-196 doi: 10.13224/j.cnki.jasp.20220445
引用本文: 孔晓治, 黄天硕, 刘育心, 等. 不同来流附面层厚度下容腔泄漏流对围带式静叶性能影响[J]. 航空动力学报, 2023, 38(1):184-196 doi: 10.13224/j.cnki.jasp.20220445
KONG Xiaozhi, HUANG Tianshuo, LIU Yuxin, et al. Influences of the cavity leakage flow on shrouded stator performance at different inlet boundary layer thicknesses[J]. Journal of Aerospace Power, 2023, 38(1):184-196 doi: 10.13224/j.cnki.jasp.20220445
Citation: KONG Xiaozhi, HUANG Tianshuo, LIU Yuxin, et al. Influences of the cavity leakage flow on shrouded stator performance at different inlet boundary layer thicknesses[J]. Journal of Aerospace Power, 2023, 38(1):184-196 doi: 10.13224/j.cnki.jasp.20220445

不同来流附面层厚度下容腔泄漏流对围带式静叶性能影响

doi: 10.13224/j.cnki.jasp.20220445
基金项目: 国家自然科学基金(52006021,52106040); 中国博士后科学基金(2021M690498,2021M700648);辽宁省自然科学基金(2020-BS-069); 大连市科技创新基金(2021JJ12GX030);海底工程技术与装备国际联合研究中心开放基金(3132022349)
详细信息
    作者简介:

    孔晓治(1989-),男,副教授,博士,从事叶轮机械气动热力学、透平机械先进密封技术研究。E-mail:kongxiaozhi_lx@163.com

  • 中图分类号: V231

Influences of the cavity leakage flow on shrouded stator performance at different inlet boundary layer thicknesses

  • 摘要:

    基于验证的数值模拟方法,针对带容腔结构的围带式静叶,研究了容腔泄漏流对其性能的影响以及容腔泄漏流与主流的相互干涉作用。在不同的来流附面层厚度下,探讨了叶栅二次流运动和角区分离发展情况,并通过总压损失系数和熵增系数对性能变化进行评判。结果表明:附面层厚度的增加使无容腔扩压叶栅总压损失系数和熵增损失系数增加。容腔泄漏流使叶片前缘出现容腔泄漏涡,并对通道涡的发展和集中脱落涡的大小产生影响;同时容腔泄漏流加强了叶栅通道内的三维流动效应,削弱了近端壁面流体的横向偏转;随着附面层增厚,带容腔的扩压叶栅的总压损失系数和熵增损失系数变化程度不明显。

     

  • 图 1  轴流压气机中围带式静叶和容腔间隙结构[2]

    Figure 1.  Shrouded stator and seal cavity structures in axial compressor[2]

    图 2  带容腔结构的环形压气机叶栅模型

    Figure 2.  Annular compressor cascade model with the seal cavity structure

    图 3  篦齿密封几何模型

    Figure 3.  Geometric model of labyrinth seal

    图 4  网格示意图

    Figure 4.  Schematic of the grids

    图 5  不同网格数下的总压损失系数

    Figure 5.  Overall total pressure loss coefficients at different grid sizes

    图 6  展向平均损失系数分布比较[17]

    Figure 6.  Comparison of spanwise averaged loss coefficient distribution[17]

    图 7  吸力面极限流线数值计算与实验结果比较

    Figure 7.  Comparison of suction surface limiting streamlines between numerical and experimental results

    图 8  压气机级间容腔密封实验台[17]

    Figure 8.  Experiment rig of compressor inter-stage seal cavity[17]

    图 9  计算结果与实验测量结果比较

    Figure 9.  Comparisons between computational results and experimental measurements.

    图 10  Blt对有无容腔静叶性能的影响

    Figure 10.  Influences of Blt on performance of stator with or without seal

    图 11  8%Blt带容腔扩压叶栅周向平均熵增分布图

    Figure 11.  Circumferential average entropy distribution of the diffuser cascade with cavity at 8%Blt

    图 12  不同Blt周向温升沿叶高分布

    Figure 12.  Spanwise distributions of averaged temperature rise at different Blt

    图 13  不同Blt周向性能参数沿叶高分布

    Figure 13.  Spanwise distributions of averaged performance parameters at different Blt

    图 14  出口截面ρavdr沿叶高分布

    Figure 14.  Spanwise distributions of ρavdr on outlet

    图 15  不同Blt下的壁面极限流线与端壁静压云图

    Figure 15.  Surface streamlines and end-wall static pressure contours of different Blt

    图 16  吸力面和压力面静压系数分布

    Figure 16.  Static pressure coefficient distributions of suction and pressure surfaces

    图 17  三维流线分布和Q准则等值面

    Figure 17.  Distributions of three-dimensional streamlines and iso-surface of Q-criterion

    图 18  不同截面处轴向涡量随泄漏流变化

    Figure 18.  Variations of the axial vorticity at different cross sections with leakage streamlines

    图 19  不同工况叶栅通道内三维漩涡结构

    Figure 19.  3D vortex structures in blade passage at different conditions

    表  1  叶型参数

    Table  1.   Profile parameters

    叶高/%进口半径/mm出口半径/mm轴向弦长/mm栅距/mm进口几何角/(°)出口几何角/(°)
    95239.99237.6938.5732.7843.1126.57
    90237.42235.4538.3432.4343.0426.69
    85234.83233.1838.1232.0843.0226.80
    70226.94226.3037.6231.0042.3826.92
    50216.15216.8436.5929.5242.1227.37
    30205.19207.2635.6528.0342.8728.27
    15196.81199.9634.5626.8843.9729.37
    10193.98197.5134.3026.5044.3529.84
    5191.12195.9534.0126.1144.7330.33
    下载: 导出CSV

    表  2  攻角沿叶高分布

    Table  2.   Distribution of incidence on span

    叶高/%攻角/(°)
    957.3
    907.0
    856.1
    704.1
    503.1
    302.1
    151.5
    102.1
    52.5
    下载: 导出CSV
  • [1] CAO Z,ZHANG X,ZHANG F,et al. Tip leakage vortex and its breakdown mechanism in aspirated compressor cascades designed with conventional method and curvature induced pressure recovery concept[J]. Aerospace Science and Technology,2021,113(6): 106692.1-106692.16.
    [2] BAYLEY F J, CHILDS P. Air temperature rises in compressor and turbine stator wells[R]. ASME Paper 94-GT-185, 1994.
    [3] KIM S,KIM K,SON C. Three-dimensional unsteady simulation of a multistage axial compressor with labyrinth seals and its effects on overall performance and flow characteristics[J]. Aerospace Science and Technology,2019,86(3): 683-693.
    [4] KATO D, YAMAGAMI M, TSUCHIYA N, et al. The influence of shrouded stator cavity flows on the aerodynamic performance of a high-speed multistage axial-flow compressor[R]. ASME Paper GT2011-46300, 2011.
    [5] GBADEBO S A,CUMPSTY N A,HYNES T P. Three-dimensional separations in axial compressors[J]. Journal of Turbomachinery,2005,127(2): 331-339. doi: 10.1115/1.1811093
    [6] ZHANG Y, MAHALLATI A, BENNER M. Experimental and numerical investigation of corner stall in a highly-loaded compressor cascade[R]. ASME Paper GT2014-27204, 2014.
    [7] 王子楠,耿少娟,张宏武. 来流边界层对压气机平面叶栅角区流动的影响[J]. 推进技术,2017,38(1): 54-60. doi: 10.13675/j.cnki.tjjs.2017.01.008

    WANG Zinan,GENG Shaojuan,ZHANG Hongwu. Effects of inlet boundary layer on corner flow in a linear compressor cascade[J]. Journal of Propulsion Technology,2017,38(1): 54-60. (in Chinese) doi: 10.13675/j.cnki.tjjs.2017.01.008
    [8] ZHENG X,YANG H. End-wall boundary layers and blockages of multistage axial compressors under different conditions[J]. Journal of Propulsion and Power,2017,33(4): 908-916. doi: 10.2514/1.B36251
    [9] MA Y,TENG J,ZHU M,et al. Influence of the inlet boundary layer on non-axisymmetric endwall contouring effects in a linear compressor cascade[J]. Mechanical Engineering Science,2022,236(12): 6530-6542. doi: 10.1177/09544062211067859
    [10] WELLBORN S R,OKIISHI T H. The influence of shrouded stator cavity flows on multistage compressor performance[J]. Journal of Turbomachinery,1999,121(7): 486-497.
    [11] 陈美宁,谢伟亮,王红涛. 静子容腔泄漏对某压气机性能影响的数值研究[J]. 航空动力学报,2014,29(11): 2543-2549. doi: 10.13224/j.cnki.jasp.2014.11.003

    CHEN Meining,XIE Weiliang,WANG Hongtao. Numerical investigation of stator cavity leakage influence to a compressor performance[J]. Journal of Aerospace Power,2014,29(11): 2543-2549. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.11.003
    [12] 孟德君,邢雷,李坚. 篦齿封严流动及其对压气机静子性能的影响[J]. 航空发动机,2013,39(6): 31-42. doi: 10.3969/j.issn.1672-3147.2013.06.006

    MENG Dejun,XING Lei,LI Jian. Influence of shrouded stator cavity flow on compressor stator performance[J]. Aeroengine,2013,39(6): 31-42. (in Chinese) doi: 10.3969/j.issn.1672-3147.2013.06.006
    [13] DEMARGNE A A J, LONGLEY J P. The aerodynamic interaction of stator shroud leakage and mainstream flows in compressors[R]. ASME Paper 2000-GT-570, 2000.
    [14] SOHN D W, KIM T, SONG S J. Influence of the leakage flow tangential velocity on the loss generation and leakage flow kinematics in shrouded axial compressor cascades[R]. ASME Paper GT2006-90979, 2006.
    [15] KIM J W, LEE J S, SONG S J, et al. The impact of leakage flow tangential velocity on secondary losses in a shrouded compressor cascade[R]. ASME Paper GT2012-69217, 2012.
    [16] YOON S,SELMEIER R,CARGILL P,et al. Effects of the stator hub configuration and stage design parameters on aerodynamic loss in axial compressors[J]. Journal of Turbomachinery,2015,137(9): 091001.1-091001.10.
    [17] LU H,YANG Y,GUO S,et al. Control of corner separation via dimpled surface for a highly loaded compressor cascade under different inlet mach number[J]. Aerospace Science and Technology,2019,85(2): 48-60.
    [18] KONG X,LIU Y,LU H,et al. Performance analysis of inter-stage leakage flows at rotating conditions in an axial compressor[J]. Journal of Thermal Science,2020,29(6): 1558-1568. doi: 10.1007/s11630-020-1378-z
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  157
  • HTML浏览量:  29
  • PDF量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 网络出版日期:  2022-12-13

目录

    /

    返回文章
    返回