留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

马赫数范围为0~4混合并联二元弯曲压缩进气道设计及试验研究

朱伟 王霄 华正旭 张堃元 梁剑寒 王俊伟

朱伟, 王霄, 华正旭, 等. 马赫数范围为0~4混合并联二元弯曲压缩进气道设计及试验研究[J]. 航空动力学报, 2023, 38(9):2271-2278 doi: 10.13224/j.cnki.jasp.20220449
引用本文: 朱伟, 王霄, 华正旭, 等. 马赫数范围为0~4混合并联二元弯曲压缩进气道设计及试验研究[J]. 航空动力学报, 2023, 38(9):2271-2278 doi: 10.13224/j.cnki.jasp.20220449
ZHU Wei, WANG Xiao, HUA Zhengxu, et al. Design and experimental research of Mach number range 0—4 2D mixed parallel-type curved compression inlet[J]. Journal of Aerospace Power, 2023, 38(9):2271-2278 doi: 10.13224/j.cnki.jasp.20220449
Citation: ZHU Wei, WANG Xiao, HUA Zhengxu, et al. Design and experimental research of Mach number range 0—4 2D mixed parallel-type curved compression inlet[J]. Journal of Aerospace Power, 2023, 38(9):2271-2278 doi: 10.13224/j.cnki.jasp.20220449

马赫数范围为0~4混合并联二元弯曲压缩进气道设计及试验研究

doi: 10.13224/j.cnki.jasp.20220449
详细信息
    作者简介:

    朱伟(1987-),男,高级工程师,博士生,主要从事飞机进排气设计及推进系统总体研究

    通讯作者:

    华正旭(1990-),男,工程师,硕士,主要从事宽速域飞行器进气道总体设计研究。E-mail:hua.zhengxu@163.com

  • 中图分类号: V211.48

Design and experimental research of Mach number range 0—4 2D mixed parallel-type curved compression inlet

  • 摘要:

    采用内外压缩型面可控的弯曲压缩进气道反设计方法,设计了一种新型混合并联式二元弯曲压缩进气道,重点针对进气道模态转换过程及冲压单独工作条件下进行了数值仿真及试验研究,获得了进气道宽速域性能,结果也表明新型混合并联式弯曲压缩进气道具有较高的综合气动特性,冲压工作状态马赫数为4、攻角为3°时总压恢复0.5以上,马赫数为3、攻角为3°时总压恢复0.75以上,涡轮工作状态马赫数为2、攻角为3°时总压恢复0.88以上,综合畸变指数小于5%,满足宽速域进发匹配需求。

     

  • 图 1  传统外并联型式组合进气道

    Figure 1.  Traditional configuration of external parallel-type combined inlet

    图 2  混合并联组合进气道构型

    Figure 2.  Configuration of mixed parallel-type combined inlet

    图 3  进气道试验模型照片

    Figure 3.  Photo of inlet model in wind tunnel

    图 4  进气道出口测量段测耙位置示意图

    Figure 4.  Schematic diagram of rake position at inlet outlet measuring section

    图 5  网格划分示意图

    Figure 5.  Configuration of computational grid

    图 6  Ma=2,α=3°涡轮进气道匹配状态流场结构

    Figure 6.  Matching flowfield structure of Ma=2,α=3° at turbine inlet operation state

    图 7  Ma=2,α=3°试验条件下涡轮进气道节流特性

    Figure 7.  Throttling performance of turbine inlet at Ma=2,α=3° experiment condition

    图 8  Ma=2,α=3°试验条件下冲压进气道节流特性

    Figure 8.  Throttling performance of ramjet inlet at Ma=2,α=3° experiment condition

    图 9  Ma=3,α=3°冲压进气道单独工作匹配点流场结构

    Figure 9.  Flowfield structure of Ma=3,α=3° at ramjet inlet operation state alone

    图 10  Ma=3试验条件下冲压进气道节流特性

    Figure 10.  Throttling performance of ramjet inlet at Ma=3 experiment condition

    图 11  Ma=4,α=3°冲压进气道单独工作匹配点流场结构

    Figure 11.  Flowfield structure of Ma=4,α=3° at ramjet inlet operation state alone

    图 12  Ma=4试验条件下冲压进气道节流特性

    Figure 12.  Throttling performance of ramjet inlet at Ma=4 experiment condition

    图 13  Ma=3,α=3°,δ2=6.7°时共同工作流场结构

    Figure 13.  Flowfield structure of Ma=3,α=3°,δ2=6.7° at combined operating condition

    图 14  Ma=3,α=3°不同调板角度下涡轮进气道节流特性

    Figure 14.  Throttling performance of turbine inlet at Ma=3, α=3° with different actuator plate angles

    图 15  Ma=3,α=3°不同调板角度下冲压通道特性

    Figure 15.  Tperformance of ramjet inlet at Ma=3, α=3° with different actuator plate angles

    表  1  冲压进气道唇口调节位置

    Table  1.   Ramjet inlet cowl-lip adjustment position

    马赫数唇口位置内收缩比
    41.32
    3前/后1.32/1.04
    下载: 导出CSV

    表  2  涡轮进气道调板板位

    Table  2.   Turbine inlet actuator plate adjustment position

    马赫数可调二级压缩面相对角度δ2/(°)
    1.213.5
    211.5
    2.59
    36.7
    下载: 导出CSV

    表  3  风洞来流参数

    Table  3.   Parameters of wind tunnel

    马赫数风洞单位雷诺数/107 m−1来流静压/Pa来流总温/K
    21.7823574288
    32.919610288
    43.093981288
    下载: 导出CSV
  • [1] BULMAN M J, SIEBENHAAR A. Combined cycle propulsion: aerojet innovations for practical hypersonic vehicles[R]. AIAA 2011-2397, 2011.
    [2] 张华军,郭荣伟,李博. TBCC进气道研究现状及其关键技术[J]. 空气动力学学报,2010,28(5): 613-620. doi: 10.3969/j.issn.0258-1825.2010.05.022

    ZHANG Huajun,GUO Rongwei,LI Bo. Research status of TBCC inlet and its key technologies[J]. Acta Aerodynamica Sinica,2010,28(5): 613-620. (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.05.022
    [3] 向先宏,钱战森,张铁军. TBCC进气道模态转换气动技术研究综述[J]. 航空科学技术,2017,28(1): 10-18.

    XIANG Xianhong,QIAN Zhansen,ZHANG Tiejun. An overview of turbine-based combined cycle (TBCC) inlet mode transition aerodynamic technology[J]. Aeronautical Science & Technology,2017,28(1): 10-18. (in Chinese)
    [4] WEIDNER J P. Conceptual study of a turbjet ramjet inlet[R]. NASA TM-80141, 1979.
    [5] 孙波,邵庆龄,倪凯捷,等. 并联TBCC可调进气道并联方案[J]. 航空动力学报,2017,32(12): 2988-2996.

    SUN Bo,SHAO Qingling,NI Kaijie,et al. Parallel plans for TBCC variable geometry inlet[J]. Journal of Aerospace Power,2017,32(12): 2988-2996. (in Chinese)
    [6] SIPPEL M. Research on tbcc propulsion for a Mach 4.5 supersonic cruise airliner[R]. AIAA 2006-7996, 2006.
    [7] SLATER J W, SAUNDERS J D. CFD simulation of hypersonic TBCC inlet mode transition[R]. AIAA 2009-7349, 2009.
    [8] FOSTER L E, SAUNDERS J D, Jr. , SANDERS B W, et al. Highlights from a Mach 4 experimental demonstration of inlet mode transition for turbine-based combined cycle hypersonic propulsion[R]. AIAA 2012-4143, 2012.
    [9] LE D K, VRNAK D R, SLATER J W, et al. A framework for simulating turbine-based combined-cycle inlet mode-transition[R]. AIAA 2012-4144, 2012.
    [10] CSANK J T, STUEBER T J. Advanced shock position control for mode transition in a turbine based combinedcycle engine inlet model[R]. NASA/TM 2013-216515, 2013.
    [11] 张明阳,王占学,刘增文,等. Ma4一级内并联式TBCC发动机模态转换性能分析[J]. 推进技术,2017,38(2): 315-322.

    ZHANG Mingyang,WANG Zhanxue,LIU Zengwen,et al. Analysis of mode transition performance for a Mach 4 over-under TBCC engine[J]. Journal of Propulsion Technology,2017,38(2): 315-322. (in Chinese)
    [12] 尹朝林. 外并联式TBCC组合发动机的建模与特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    YIN Chaolin. The modeling and characteristics analisis of over/under TBCC[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [13] 李龙,李博,梁德旺,等. 涡轮基组合循环发动机并联式进气道的气动特性[J]. 推进技术,2008,29(6): 667-672.

    LI Long,LI Bo,LIANG Dewang,et al. Aerodynamic characteristics of over/under inlet for turbine based combined cycle engine[J]. Journal of Propulsion Technology,2008,29(6): 667-672. (in Chinese)
    [14] 赵亮. 内并联式TBCC进气道气动设计与分析[D]. 南京: 南京航空航天大学, 2010.

    ZHAO Liang. Aerodynamic design and analysis of an inner shunt-wound inlet used in turbine based combined cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)
    [15] 唐伟员. 用于内并联TBCC 的变几何二元式进气道设计及气动研究[D]. 南京: 南京航空航天大学, 2016.

    TANG Weiyuan. Aerodynamic design and study of a variable geometry two-dimensional inlet used in inner shunt-wound turbine based combined cycle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [16] 左逢源,黄国平,陈杰,等. 基于内乘波概念的TBCC进气道过渡模态研究[J]. 工程热物理学报,2015,36(2): 274-278.

    ZUO Fengyuan,HUANG Guoping,CHEN Jie,et al. Based on the concept of waverider TBCC inlet mode transition study[J]. Journal of Engineering Thermophysics,2015,36(2): 274-278. (in Chinese)
    [17] 刘愿,钱战森,向先宏. 外并联式TBCC进气道模态转换风洞试验及模型典型影响因素分析[J]. 实验流体力学,2019,33(5): 19-28.

    LIU Yuan,QIAN Zhansen,XIANG Xianhong. An analysis on typical influencing factors of wind tunnel experimental model of over-under TBCC inlet mode transition[J]. Journal of Experiments in Fluid Mechanics,2019,33(5): 19-28. (in Chinese)
    [18] 张堃元. 基于弯曲激波压缩系统的高超声速进气道反设计研究进展[J]. 航空学报,2015,36(1): 274-288.

    ZHANG Kunyuan. Research progress of hypersonic inlet reverse design based on curved shock compression system[J]. Acta Aeronautica et Astronautica Sinica,2015,36(1): 274-288. (in Chinese)
    [19] 王磊,张堃元,向有志,等. 高超声速二元弯曲激波压缩面反设计方法的参数化研究[J]. 南京航空航天大学学报,2013,45(4): 441-446. doi: 10.3969/j.issn.1005-2615.2013.04.001

    WANG Lei,ZHANG Kunyuan,XIANG Youzhi,et al. Parameter analysis of reverse design method of 2-D hypersonic curved shock compression surface[J]. Journal of Nanjing University of Aeronautics & Astronautics,2013,45(4): 441-446. (in Chinese) doi: 10.3969/j.issn.1005-2615.2013.04.001
    [20] 朱伟,张堃元,南向军. 壁面马赫数分布规律可控的新型内收缩基准流场设计方法[J]. 推进技术,2013,34(4): 433-438.

    ZHU Wei,ZHANG Kunyuan,NAN Xiangjun. Investigation on basic flowfield with controlled Mach number gradient for hypersonic inward turning inlets[J]. Journal of Propulsion Technology,2013,34(4): 433-438. (in Chinese)
    [21] 朱伟,华正旭,王霄,等. 二元弯曲压缩进气道变攻角起动试验[J]. 航空动力学报,2020,35(5): 992-999.

    ZHU Wei,HUA Zhengxu,WANG Xiao,et al. Variable angle of attack start experiment of 2D curved compression inlet[J]. Journal of Aerospace Power,2020,35(5): 992-999. (in Chinese)
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  118
  • HTML浏览量:  35
  • PDF量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 网络出版日期:  2023-08-07

目录

    /

    返回文章
    返回