Calculation method of thrust target value for civil aircraft
-
摘要:
推力管理是民航客机飞行管理系统的重要功能之一。在整个航线内,飞行管理系统根据不同飞行航段以及不同飞行状态,确定飞机对发动机的推力需求,并以此作为推力目标值形成发动机油门杆控制的指令,其中推力目标值的计算是推力管理的核心。针对民航客机各飞行航段的特点,采用飞行动力学方法对飞机爬升、巡航、下降三个航段中不同飞行方式下的推力目标值计算方法进行研究。以波音737-800实际飞行记录数据为算例,进行推力目标值计算方法仿真对比验证,结果表明:所计算的推力目标值变化趋势与飞行性能理论相符,典型航段推力目标值计算与实际飞行数据的对比误差不大于3%。所提出的推力目标值计算方法可为民航客机推力管理系统设计提供参考。
Abstract:Thrust management is one of the important functions of civil aircraft flight management system. In different flight phases and flight states of the whole route, the flight management system needs to calculate the aircraft thrust requirements for engine, and then use the required thrust as the target thrust to generate the command of engine throttle control. Of which, thrust target value calculation is the core of thrust management. According to different flight characteristics of each phase, the calculation method of aircraft thrust target value was studied by using flight dynamics. The calculation process of climb, cruise, descent phases at different flight modes were analyzed in detail. Taking Boeing 737-800 flight record data as an example, the thrust target value calculation method was simulated and verified. The results showed that the calculated thrust value was consistent with the flight performance theory, and the relative error between the calculated thrust and the actual flight record data in typical flight phases was less than 3%. The thrust target value calculation method can provide a reference for civil aircraft thrust management system design.
-
θ/(°) 俯仰角 γ/(°) 爬升角 φp/(°) 发动机安装角 α/(°) 攻角 L/N 飞机升力 CL 升力系数 D/N 飞机阻力 CD 阻力系数 Vt/(m/s) 真空速 T0/K 大气温度 Vias/(m/s) 表速 T1*/K 发动机进口总温 Sw/m2 机翼面积 p0/Pa 大气压力 h/m 飞行高度 a/(m/s) 当地声速 Ma 马赫数 Rc/(m/s) 爬升率 T/N 发动机推力 Tcor/N 发动机换算推力 m/kg 飞机质量 表 1 爬升航段飞行数据及仿真数据
Table 1. Flight data and simulation results in climb phase
时间/s 发动机转速N1/% 误差/% 飞行数据 数值仿真 200 87.8 88.0153 0.2153 250 89.6 87.7877 1.8123 300 91.1 90.2353 0.8647 350 92.4 92.3923 0.0077 400 94.4 94.5747 0.1747 450 96.3 95.7673 0.5327 500 96.5 96.0531 0.4469 550 83.1 80.3186 2.7814 600 80.0 80.1885 0.1885 650 97.6 98.3322 0.7322 700 94.1 91.6704 2.4296 表 2 巡航航段的飞行数据及仿真数据
Table 2. Flight data and simulation results in cruise phase
时间/s 发动机转速N1/% 误差/% 飞行数据 数值仿真 800 78.8 79.3539 0.5539 1100 78.9 79.8125 0.9125 1400 79.4 79.34 0.06 1700 78.9 79.7117 0.8117 2000 79.0 79.5576 0.5576 2300 79.5 79.7561 0.2561 2600 79.1 79.5105 0.4105 2900 78.6 79.8032 1.2032 3200 79.6 79.5647 0.0353 3500 79.3 79.7215 0.4215 3800 79.3 79.5771 0.2771 4100 79.1 79.9257 0.8257 表 3 下降航段(a)飞行数据及仿真数据
Table 3. Flight data and simulation results in descent phase (a)
时间/s 发动机转速N1/% 误差/% 飞行数据 数值仿真 4200 64.0 63.62260 0.37740 4300 55.5 53.73930 1.76070 4400 33.3 33.36600 0.06600 4500 32.6 32.68570 0.08570 4600 44.8 45.29445 0.49445 4700 45.9 47.47890 1.57890 4800 52.8 53.21670 0.41670 4900 62.6 62.68380 0.08380 5000 63.4 61.9956 1.40440 5100 63.4 61.6779 1.72210 表 4 下降航段(b)飞行数据及仿真数据
Table 4. Flight data and simulation results in descent phase (b)
时间/s 发动机转速N1/% 误差/% 飞行数据 数值仿真 5150 40.6 46.52916 5.92916 5200 40.6 44.29788 3.69788 5250 64.7 61.78360 2.91640 5300 36.4 35.76290 0.63710 5350 39.5 40.77256 1.27256 5400 34.9 45.25020 10.35020 -
[1] 高金源, 冯华南. 民用飞机飞行控制系统[M]. 北京: 北京航空航天大学出版社, 2018. [2] 王金岩, 孙晓敏, 齐林, 等. 民用飞机飞行管理系统[M]. 上海: 上海交通大学出版社, 2019. [3] MOIR I, SEABRIDGE A, JUKES M. Civil avionics systems[M]. Hoboken, US : Wiley, 2013. [4] 曹萱,李广文,薛广龙,等. 基于航迹运行的大型客机推力管理系统需求分析[J]. 飞机设计,2019,39(5): 1-7.CAO Xuan,LI Guangwen,XUE Guanglong,et al. Demand analysis of large passenger aircraft thrust management system based on trajectory based operation[J]. Aircraft Design,2019,39(5): 1-7. (in Chinese) [5] Boeing Commercial Airplane Group. B737 aircraft flight manual[M]. Chicago, United States: The Boeing Company, 2002. [6] Boeing Commercial Airplane Group. B737 Flight planning and performance manual[M]. Chicago, United States: The Boeing Company, 2006. [7] 陈勇, 赵春玲, 张克志. 支线飞机自动飞行与飞行管理设计与验证[M]. 上海: 上海交通大学出版社, 2018. [8] 李荣. 大型客机推力管理技术研究[D]. 西安: 西北工业大学, 2021.LI Rong. Research on thrust management technology of large civil aircraft[D]. Xi’an: Northwestern Polytechnical University, 2021. (in Chinese) [9] DAIDZIC N. Jet engine thrust ratings[J]. Professional Pilot,2012,46(9): 92-96. [10] KURZKE J. Modeling the thrust management of commercial airliners[R]. Reston, VA: 21st International Symposium on Air Breathing Engine, 2013. [11] GUNN P D, MARTINDAKLE I C, HERALD R A, et al. Method and apparatus for automatically providing jet engine thrust ratings to avionic systems: US05893040A [P]. 1999-04-06. [12] CHEN Yong, LENG Jingyan, LU Keke. Analysis and simulation of thrust management system for large plane[C]//2017 IEEE International Conference on Unmanned Systems. Piscataway, US: IEEE, 2018: 187-191. [13] JIRÁSEK A,JEANS T L,MARTENSON M,et al. Improved methodologies for the design of maneuver for stability and control simulations[J]. Aerospace Science and Technology,2013,25(1): 203-223. doi: 10.1016/j.ast.2012.01.008 [14] ZHANG Wei,GAO Yakui. Distributed architecture optimal design for aircraft thrust management system with safety method[J]. IOP Conference Series:Materials Science and Engineering,2019,692(1): 012037. doi: 10.1088/1757-899X/692/1/012037 [15] 姚志超. 民用飞机新型推力管理架构研究[C]//第九届长三角科技论坛—航空航天科技创新与长三角经济转型发展分论坛论文集. 南京: 江苏省航空航天学会, 2012: 274-278. [16] 杨森. 大型客机推力管理系统方案及其关键技术研究[D]. 西安: 西北工业大学, 2012.YANG Sen. Scheme and key technology research on thrust management system of large civil aircraft[D]. Xi’an: Northwestern Polytechnical University, 2012. (in Chinese) [17] 郑翌. 大型客机推力管理系统研究及飞/推综合控制系统设计[D]. 西安: 西北工业大学, 2012.ZHENG Yi. Research on thrust management system and flight/thrust integrated control methods for large commercial aircrafts[D]. Xi’an: Northwestern Polytechnical University, 2012. (in Chinese) [18] 孙鹏,刘超,柯劼. 大型飞机推力管理功能研究[J]. 民用飞机设计与研究,2012(3): 18-21. doi: 10.3969/j.issn.1674-9804.2012.03.011SUN Peng,LIU Chao,KE Jie. Civil aircraft thrust management function research[J]. Civil Aircraft Design & Research,2012(3): 18-21. (in Chinese) doi: 10.3969/j.issn.1674-9804.2012.03.011 [19] 刘晓明,赵廷渝,温晓航,等. 民航运输机减推力起飞技术[J]. 飞行力学,2009,27(3): 83-85.LIU Xiaoming,ZHAO Tingyu,WEN Xiaohang,et al. Reduced-thrust takeoff technique applied to passenger airplanes[J]. Flight Dynamics,2009,27(3): 83-85. (in Chinese) [20] 丁松滨. 飞行性能与飞行计划[M]. 北京: 科学出版社, 2013. [21] 陈红英. 飞机性能工程[M]. 辽宁 大连: 大连海事大学出版社, 2019. [22] Federal Aviation Administration. Part 25-airworthiness standards: transport category airplanes[S]. US: Federal Aviation Administration, 2008: 25.101-25.125. [23] 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4[S]. 北京: 中华人民共和国交通运输部, 2016: 23-27 [24] BRIAN L S, FRANK L. 飞机控制与仿真[M]. 唐长红, 译. 北京: 航空工业出版社, 2017. [25] ROSKAM J, LAN C T. Airplane aerodynamics and performance[M]. Kansas, US: DAR Corporation, 2016. [26] Boeing Commercial Airplane Group. Boeing 737-800 performance engineers manual[M]. Chicago, United States: The Boeing Company, 1998. [27] 李超,严家明,刘松林. 基于ARM的无人机真空速测量系统设计[J]. 电子技术应用,2012,38(10): 23-25, 29. doi: 10.3969/j.issn.0258-7998.2012.10.009LI Chao,YAN Jiaming,LIU Songlin. Design of airspeed measuring system for the unmanned aerial vehicle based on ARM[J]. Application of Electronic Technique,2012,38(10): 23-25, 29. (in Chinese) doi: 10.3969/j.issn.0258-7998.2012.10.009 -