留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

齿形结构对迷宫密封泄漏与动力特性影响

叶强生 张万福 周庆辉 李春

叶强生, 张万福, 周庆辉, 等. 齿形结构对迷宫密封泄漏与动力特性影响[J]. 航空动力学报, 2024, 39(6):20220460 doi: 10.13224/j.cnki.jasp.20220460
引用本文: 叶强生, 张万福, 周庆辉, 等. 齿形结构对迷宫密封泄漏与动力特性影响[J]. 航空动力学报, 2024, 39(6):20220460 doi: 10.13224/j.cnki.jasp.20220460
YE Qiangsheng, ZHANG Wanfu, ZHOU Qinghui, et al. Effect of tooth profile on the leakage and dynamic characteristics of labyrinth seals[J]. Journal of Aerospace Power, 2024, 39(6):20220460 doi: 10.13224/j.cnki.jasp.20220460
Citation: YE Qiangsheng, ZHANG Wanfu, ZHOU Qinghui, et al. Effect of tooth profile on the leakage and dynamic characteristics of labyrinth seals[J]. Journal of Aerospace Power, 2024, 39(6):20220460 doi: 10.13224/j.cnki.jasp.20220460

齿形结构对迷宫密封泄漏与动力特性影响

doi: 10.13224/j.cnki.jasp.20220460
基金项目: 国家自然科学基金(51875361); 上海市自然科学基金(20ZR1439200)
详细信息
    作者简介:

    叶强生(1998-),男,硕士生,研究方向为透平机械密封动力学

    通讯作者:

    张万福(1986-),男,副教授,博士,研究方向为透平机械流体激振及旋转机械故障诊断。E-mail:wfzhang@usst.edu.cn

  • 中图分类号: V232.9;TK263

Effect of tooth profile on the leakage and dynamic characteristics of labyrinth seals

  • 摘要:

    建立齿在静子上迷宫密封(TOS LS)、齿在转子上迷宫密封(TOR LS)与交错式迷宫密封(ILS)三维数值分析模型,并采用多频椭圆涡动轨迹模型与计算流体力学方法阐明四种齿形角(θ=0°, 15°, 30°, 45°)对三种迷宫密封泄漏与动力特性的影响。结果表明:在转子转速15000 r/min与进口压力6.9×105 Pa的运行工况下,ILS具有最小的泄漏量,但是若采用过小的齿形角(θ=0°, 15°)易引发转子失稳;TOR LS具有最差的封严性能;TOS LS具有最好的系统稳定性。在齿形角从0°增加至45°时:TOS LS、TOR LS与ILS的泄漏量分别降低5.6%、5.1%与16.8%;中间腔室负气流切向力的绝对值分别增加60.2%、133.9%与470.3%;整个密封段的有效阻尼分别增加44.9%~61.9%、30.7%~53.6%与90.4%~445.3%,系统稳定性均得到显著加强。

     

  • 图 1  三种迷宫密封几何结构(单位:mm)

    Figure 1.  Geometries of three labyrinth seals (unit: mm)

    图 2  椭圆涡动轨迹模型示意图

    Figure 2.  Schematic of the elliptical whirling orbit model

    图 3  TOS LS计算模型及其网格分布

    Figure 3.  Computational model and grid distribution of TOS LS

    图 4  网格无关性验证

    Figure 4.  Grid independence verification

    图 5  数值与实验方法的动力特性系数对比

    Figure 5.  Comparison of the rotordynamic coefficient between numerical and experimental methods

    图 6  不同齿形角下三种迷宫密封的泄漏特性

    Figure 6.  Leakage characteristics of three labyrinth seals with different tooth profile angles

    图 7  不同齿形角下TOS LS第七腔室速度云图

    Figure 7.  Velocity contours for cavity #7 of TOS LS with different teeth profile angles

    图 8  不同齿形角下TOS LS第七腔室湍流动能云图

    Figure 8.  Turbulence kinetic energy contours for cavity #7 of TOS LS with different teeth profile angles

    图 9  不同齿形角下ILS湍流黏度云图

    Figure 9.  Turbulence viscosity contours of ILS with different tooth profile angles

    图 10  不同齿形角下TOS LS、TOR LS直接刚度随涡动频率变化趋势

    Figure 10.  Direct stiffness of TOS LS, TOR LS versus whirling frequency with different tooth profile angles

    图 11  不同齿形角下TOS LS、TOR LS交叉刚度随涡动频率变化趋势

    Figure 11.  Cross-coupled stiffness of TOS LS, TOR LS versus whirling frequency with different tooth profile angles

    图 12  不同齿形角下TOS LS、TOR LS直接阻尼随涡动频率变化趋势

    Figure 12.  Direct damping of TOS LS, TOR LS versus whirling frequency with different tooth profile angles

    图 13  不同齿形角下TOS LS、TOR LS有效阻尼随涡动频率变化趋势

    Figure 13.  Effective damping of TOS LS, TOR LS versus whirling frequency with different tooth profile angles

    图 14  不同齿形角下ILS刚度系数随涡动频率变化趋势

    Figure 14.  Stiffness coefficient of ILS versus whirling frequency with different tooth profile angles

    图 15  不同齿形角下ILS阻尼系数随涡动频率变化趋势

    Figure 15.  Damping coefficient of ILS versus whirling frequency with different tooth profile angles

    图 16  TOS LS (θ=30°)转子位移与激振力随涡动时间变化趋势

    Figure 16.  Rotor displacement and flow-induced force of TOS LS (θ=30°) versus whirling time

    图 17  不同齿形角下三种迷宫密封第七腔室的静压云图与激振力分布(x方向激振,t=0.1 s)

    Figure 17.  Static pressure contours and flow-induced force distribution for cavity #7 of three labyrinth seals with different tooth profile angles (x-direction excitation, t=0.1 s)

    表  1  几何尺寸

    Table  1.   Geometry dimensions

    参数数值
    密封长度L/mm65.02
    转子半径R/mm85.3
    密封间隙Cr/mm0.3
    齿尖宽度s/mm0.3
    齿高h/mm4.01
    齿距l/mm5
    齿形角θ/(°)0, 15, 30, 45
    齿数Nt14
    下载: 导出CSV

    表  2  运行工况

    Table  2.   Operating conditions

    参数设置
    工质空气 (理想气体)
    湍流模型标准k-ε
    壁面属性绝热、光滑
    进口温度 T/K287
    进口压力 pin/105 Pa6.9
    出口压力 pout/105 Pa1
    转速 ω/103(r/min)15
    涡动频率 Ωi/Hz20, 40,···, 240, 260
    下载: 导出CSV
  • [1] CHUPP R E,HENDRICKS R C,LATTIME S B,et al. Sealing in turbomachinery[J]. Journal of Propulsion and Power,2006,22(2): 313-349. doi: 10.2514/1.17778
    [2] CHILDS D W. Turbomachinery rotordynamics: phenomena, modeling, and analysis[M]. New York: Wiley, 1993.
    [3] CHILDS D, VANCE J. Annular gas seals and rotordynamics of compressors and turbines[R]. College Station, Texas , USA: 26th Turbomachinery Symposium, 1997
    [4] 吴可欣,张万福,曹浩,等. 阻旋栅对梳齿密封动静特性影响研究[J]. 摩擦学学报,2020,40(5): 647-655. doi: 10.16078/j.tribology.2019249

    WU Kexin,ZHANG Wanfu,CAO Hao,et al. Effects of swirl brakes on static and rotordynamic performance of labyrinth seals[J]. Tribology,2020,40(5): 647-655. (in Chinese) doi: 10.16078/j.tribology.2019249
    [5] LI Jin,FU Xiaoli,YAN Shenglin. Simulation and experimental investigation of a new type of combined seal structure[J]. Journal of Fluids Engineering,2021,143(5): 051503. doi: 10.1115/1.4049678
    [6] GU Qianlei,YANG Jiangang,ZHANG Wanfu,et al. On the dynamic performance of a novel airfoil guider seal with the controlled circumferential flow: numerical analysis and experimental validation[J]. Tribology International,2022,167: 107413. doi: 10.1016/j.triboint.2021.107413
    [7] ZHANG Wanfu,WANG Yingfei,GU Qianlei,et al. Rotordynamic performance of the interlocking labyrinth seal with a tilting rotor[J]. Journal of Engineering for Gas Turbines and Power,2021,143(1): 011012. doi: 10.1115/1.4048909
    [8] SCHARRER J K. Rotordynamic coefficients for stepped labyrinth gas seals[J]. Journal of Tribology,1989,111(1): 101-107. doi: 10.1115/1.3261858
    [9] GAO Rui,KIRK G. CFD study on stepped and drum balance labyrinth seal[J]. Tribology Transactions,2013,56(4): 663-671. doi: 10.1080/10402004.2013.776159
    [10] 张晓旭,李雪松,王路遥,等. 直通齿和交错齿迷宫密封流场与动特性的比较[J]. 工程热物理学报,2014,35(6): 1083-1086.

    ZHANG Xiaoxu,LI Xuesong,WANG Luyao,et al. The comparison of flow field and dynamic characteristic of straight and staggered labyrinth seal[J]. Journal of Engineering Thermophysics,2014,35(6): 1083-1086. (in Chinese)
    [11] TSUKUDA T,HIRANO T,WATSON C,et al. A numerical investigation of the effect of inlet preswirl ratio on rotordynamic characteristics of labyrinth seal[J]. Journal of Engineering for Gas Turbines and Power,2018,140(8): 082506. doi: 10.1115/1.4039360
    [12] WU Tingcheng,SAN ANDRÉS L. Leakage and dynamic force coefficients for two labyrinth gas seals: teeth-on-stator and interlocking teeth configurations. A computational fluid dynamics approach to their performance[J]. Journal of Engineering for Gas Turbines and Power,2019,141(4): 042501. doi: 10.1115/1.4041123
    [13] CHILDS D W,SCHARRER J K. Experimental rotordynamic coefficient results for teeth-on-rotor and teeth-on-stator labyrinth gas seals[J]. Journal of Engineering for Gas Turbines and Power,1986,108(4): 599-604. doi: 10.1115/1.3239953
    [14] CHILDS D, ELROD D, HALE K. Rotordynamic coefficient and leakage test results for interlock and tooth-on-stator labyrinth seals[R]. ASME Paper 88-GT-87, 1988
    [15] WANG Tianhao,LI Zhigang,LI Jun. Rotordynamic characteristics of the straight-through labyrinth seal based on the applicability analysis of leakage models using bulk-flow method[J]. Journal of Engineering for Gas Turbines and Power,2022,144(1): 011028. doi: 10.1115/1.4052267
    [16] CANGIOLI F,PENNACCHI P,VANNINI G,et al. On the thermodynamic process in the bulk-flow model for the estimation of the dynamic coefficients of labyrinth seals[J]. Journal of Engineering for Gas Turbines and Power,2018,140(3): 032502. doi: 10.1115/1.4037919
    [17] 司和勇,曹丽华,李盼. 密封结构对汽轮机转子动力特性的影响分析[J]. 中国电机工程学报,2020,40(1): 165-175,384. doi: 10.13334/j.0258-8013.pcsee.182234

    SI Heyong,CAO Lihua,LI Pan. Effect of seal structure on rotor dynamic characteristics of steam turbine[J]. Proceedings of the CSEE,2020,40(1): 165-175,384. (in Chinese) doi: 10.13334/j.0258-8013.pcsee.182234
    [18] ZHANG Xuan,JIANG Jinbo,PENG Xudong,et al. Leakage and rotordynamic characteristics of labyrinth seal and hole-pattern damping seal with special-shaped 3D cavity[J]. Industrial Lubrication and Tribology,2020,73(2): 396-403.
    [19] LEE S I,KANG Y J,KIM W J,et al. Effects of tip clearance, number of teeth, and tooth front angle on the sealing performance of straight and stepped labyrinth seals[J]. Journal of Mechanical Science and Technology,2021,35(4): 1539-1547. doi: 10.1007/s12206-021-0318-5
    [20] MEHTA N J,CHILDS D W. Measured comparison of leakage and rotordynamic characteristics for a slanted-tooth and a straight-tooth labyrinth seal[J]. Journal of Engineering for Gas Turbines and Power,2014,136(1): 012501. doi: 10.1115/1.4025267
    [21] 林丽,刘卫华. 齿型夹角对迷宫密封性能影响的数值研究[J]. 润滑与密封,2007,32(3): 47-50. doi: 10.3969/j.issn.0254-0150.2007.03.014

    LIN Li,LIU Weihua. Numerical study of configuration effect on labyrinth seal characteristics[J]. Lubrication Engineering,2007,32(3): 47-50. (in Chinese) doi: 10.3969/j.issn.0254-0150.2007.03.014
    [22] ZHANG Mingjie,YANG Jiangang,XU Wanjun,et al. Leakage and rotordynamic performance of a mixed labyrinth seal compared with that of a staggered labyrinth seal[J]. Journal of Mechanical Science and Technology,2017,31(5): 2261-2277. doi: 10.1007/s12206-017-0423-7
    [23] JIA Xingyun,ZHENG Qun,JIANG Yuting,et al. Leakage and rotordynamic performance of T type labyrinth seal[J]. Aerospace Science and Technology,2019,88: 22-31. doi: 10.1016/j.ast.2019.02.043
    [24] ALFORD J S. Protecting turbomachinery from self-excited rotor whirl[J]. Journal of Engineering for Power,1965,87(4): 333-343. doi: 10.1115/1.3678270
    [25] CHEN Yaoxing,LI Zhigang,LI Jun,et al. Effects of tooth bending damage on the leakage performance and rotordynamic coefficients of labyrinth seals[J]. Chinese Journal of Aeronautics,2020,33(4): 1206-1217. doi: 10.1016/j.cja.2019.12.004
    [26] 陈尧兴,李志刚,晏鑫,等. 迷宫齿蘑菇形磨损时密封泄漏特性和转子动力特性系数研究[J]. 西安交通大学学报,2018,52(1): 40-46.

    CHEN Yaoxing,LI Zhigang,YAN Xin,et al. Investigation on the leakage performance and rotordynamic coefficients of labyrinth seal with mushroom-shaped tooth wear[J]. Journal of Xi’an Jiaotong University,2018,52(1): 40-46. (in Chinese)
    [27] LI Zhigang,LI Jun,YAN Xin. Multiple frequencies elliptical whirling orbit model and transient RANS solution approach to rotordynamic coefficients of annual gas seals prediction[J]. Journal of Vibration and Acoustics,2013,135(3): 031005. doi: 10.1115/1.4023143
    [28] ERTAS B H,DELGADO A,VANNINI G. Rotordynamic force coefficients for three types of annular gas seals with inlet preswirl and high differential pressure ratio[J]. Journal of Engineering for Gas Turbines and Power,2012,134(4): 1.
    [29] ZHANG Xuan,JIANG Jinbo,PENG Xudong,et al. Leakage reduction by optimization of hole-pattern damping seal with inclined hole cavity[J]. International Journal of Heat and Mass Transfer,2021,169: 120924. doi: 10.1016/j.ijheatmasstransfer.2021.120924
    [30] LI Zhigang,LI Jun,FENG Zhenping. Numerical comparisons of rotordynamic characteristics for three types of labyrinth gas seals with inlet preswirl[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2016,230(7): 721-738. doi: 10.1177/0957650916668768
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  86
  • HTML浏览量:  49
  • PDF量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-26
  • 网络出版日期:  2023-09-04

目录

    /

    返回文章
    返回