Stage spacing on aerodynamic performance of a certain type of coaxial contra rotating propeller
-
摘要:
为掌握共轴对转螺旋桨的桨间气动干扰规律,降低桨间气动干扰强度,提升共轴对转螺旋桨的气动性能,基于非定常雷诺平均Navier-Stocks方程耦合湍流模型的计算方法,并使用了滑移网格技术,研究了4种不同桨间距的6×6构型对转螺旋桨的桨间气动干扰对其气动性能的影响,桨间距选择了4种不同方案。研究结果表明:在4种不同的轴向桨间距中,当桨间距为0.25倍螺旋桨直径时,共轴对转螺旋桨的平均推进效率最高,并且气动干扰导致的效率脉动幅度较小;随着桨间距的增大,前、后排桨受到的气动干扰强度都会减小,相比于后桨,前桨因气动干扰造成的脉动对桨间距更加敏感。可见共轴对转螺旋桨的桨间距会对螺旋桨的气动干扰,及气动性能产生较为明显的影响,在设计共轴对转螺旋桨时选择合适的桨间距,有利于提高螺旋桨气动性能。
Abstract:In order to master the law of aerodynamic interaction between stages of coaxial contra rotating propeller, reduce the intensity of aerodynamic interference between propellers and improve the aerodynamic performance of coaxial contra rotating propeller, the effects of 4 stage spaces between front and rear rows of 6×6 contra rotating propeller on aerodynamic interference were studied based on Reynolds averaged unsteady Navier-Stocks equation method and sliding mesh technique. The results showed that: the average propulsion efficiency of the coaxial contra rotating propeller was the highest when the stage spacing was 0.25 times of the propeller diameter. In addition, the efficiency fluctuation caused by aerodynamic interference was smaller. With the increase of stage spacing, the intensity of aerodynamic interference of front and rear propellers decreased. Compared with the rear propeller, the thrust pulsation of front propeller caused by aerodynamic interference was more sensitive to stage spacing. It can be seen that the stage spacing of coaxial contra rotating propeller had an obvious impact on the aerodynamic interference of propellers. Appropriate stage spacing in the design of coaxial contra rotating propeller is important to improve the aerodynamic performance of contra rotating propeller.
-
-
[1] BREHM C,BARAD M F,KIRIS C C. Development of immersed boundary computational aeroacoustic prediction capabilities for open-rotor noise[J]. Journal of Computational Physics,2019,388(1): 690-716. [2] EBUS T,DIETZ M,HUPFER A. Experimental and numerical studies on small contra-rotating electrical ducted fan engines[J]. CEAS Aeronautical Journal,2021,12: 559-571. doi: 10.1007/s13272-021-00517-7 [3] TANG J,WANG X,DUAN D,et al. Optimisation and analysis of efficiency for contra-rotating propellers for high-altitude airships[J]. Aeronautical Journal,2019,123(1263): 706-726. doi: 10.1017/aer.2019.14 [4] 陈博,贺象. 国外桨扇技术发展概况[J]. 燃气涡轮试验与研究,2020,33(1): 54-58. doi: 10.3969/j.issn.1672-2620.2020.01.010CHEN Bo,HE Xiang. Development of the propfan technology abroad[J]. Gas Turbine Experiment and Research,2020,33(1): 54-58. (in Chinese) doi: 10.3969/j.issn.1672-2620.2020.01.010 [5] 闫文辉,汤斯佳,王奉明,等. 共轴对转螺旋桨的非定常气动干扰[J]. 航空动力学报,2021,36(7): 1398-1405. doi: 10.13224/j.cnki.jasp.20210051YAN Wenhui,TANG Sijia,WANG Fengming,et al. Unsteady aerodynamic interactions of contra rotating propeller[J]. Journal of Aerospace Power,2021,36(7): 1398-1405. (in Chinese) doi: 10.13224/j.cnki.jasp.20210051 [6] 王靖元,单鹏,周亦成. 浸入式贴体网格边界方法的对转桨扇非定常流动数值模拟[J]. 航空动力学报,2021,36(5): 1060-1071. doi: 10.13224/j.cnki.jasp.2021.05.017WANG Jingyuan,SHAN Peng,ZHOU Yicheng. Unsteady flow simulation of contra-rotating propfans using immersed body-fitted grids boundary method[J]. Journal of Aerospace Power,2021,36(5): 1060-1071. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.05.017 [7] FLISSARD F,BOISARD R,GAVERIAUX R,et al. Influence of blade deformations on open-rotor low-speed and high-speed aerodynamics and aeroacoustics[J]. Journal of Aircraft,2018,55(6): 2267-2281. doi: 10.2514/1.C034676 [8] SHI W,LI J,YANG Z,et al. CFD analysis of contrarotating open rotor aerodynamic interactions[J]. International Journal of Aerospace Engineering,2018,2018: 1-13. [9] STUERMER A. Validation of an unstructured chimera grid approach for the simulation of propeller flows[R]. AIAA 2004-5289, 2004. [10] 周莉,是介,王占学. 开式转子发动机研究进展[J]. 推进技术,2019,40(9): 1921-1932. doi: 10.13675/j.cnki.tjjs.190084ZHOU Li,SHI Jie,WANG Zhanxue. Research progress in open rotor engine[J]. Journal of Propulsion Technology,2019,40(9): 1921-1932. (in Chinese) doi: 10.13675/j.cnki.tjjs.190084 [11] 夏贞锋,杨永. 对转开式转子非定常气动干扰特性分析[J]. 航空动力学报,2014,29(4): 835-843. doi: 10.13224/j.cnki.jasp.2014.04.013XIA Zhenfeng,YANG Yong. Characteristic analysis of unsteady aerodynamic interactions of contra rotating open rotor[J]. Journal of Aerospace Power,2014,29(4): 835-843. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.04.013 [12] 周人治,郝玉扬,祁宏斌. 开式转子发动机对转桨扇设计[J]. 燃气涡轮试验与研究,2014,27(1): 1-5.ZHOU Renzhi,HAO Yuyang,QI Hongbin. Open rotor contra rotating prop-fan design[J]. Gas Turbine Experiment and Research,2014,27(1): 1-5. (in Chinese) [13] 张宇, 王晓亮, 马影. 平流层飞艇对转螺旋桨推进性能研究[J]. 大连理工大学学报, 2020, 60(3): 221-227.ZHANG Yu, WANG Xiaoliang, MA Ying. Study of propulsion performance of contra-rotating propellers for stratospheric airship[J]. Journal of Dalian University of Technology, 2020, 60(3): 221-227. (in Chinese) [14] 吕昌昊,胡天翔,孙韬,等. 基于BWI辐射效率的低气动噪声共轴对转螺旋桨的设计研究[J]. 民用飞机设计与研究,2022,144(1): 83-89.LÜ Changhao,HU Tianxiang,SUN Tao,et al. Low noise counter rotating propellers design based on BWI radiation efficiency[J]. Civil Aircraft Design & Research,2022,144(1): 83-89. (in Chinese) [15] MENTER F, RUMSEY C. Assessment of two-equation turbulence models for transonic flows[R]. AIAA 94-2343, 1994. [16] KHAN W,NAHON M. A propeller model for general gorward flight conditions[J]. International Journal of Intelligent Unmanned Systems,2015,3(2): 72-92. [17] THEYS B, DIMITIADIS G, ANDRIANNE T, et al. Wind tunnel testing of a VTOL MAV propeller in tilted operating mode[C]// International Conference on Unmanned Aircraft Systems. Orlando, FL, US: IEEE, 2014: 23-30. [18] 林沐阳, 招启军, 赵国庆. 基于滑移网格的倾转旋翼机全机干扰流场研究[J]. 航空科学技术, 2021, 32(1): 100-108.LIN Muyang, ZHAO Qijun, ZHAO Guoqing. Research on the whole aircraft interference flow field of tilt-rotor aircraftbased on sliding grid[J]. Aeronautical Science & Technology, 2021, 32(1): 100-108. (in Chinese) [19] 高飞飞. 螺旋桨滑流非定常数值模拟与影响研究[J]. 航空计算技术,2017,47(5): 14-17. doi: 10.3969/j.issn.1671-654X.2017.05.004GAO Feifei. Numerical simulation of unsteady and research on effect of propeller slipstream[J]. Aeronautical Computing Technique,2017,47(5): 14-17. (in Chinese) doi: 10.3969/j.issn.1671-654X.2017.05.004