留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机增材制造结构强度、寿命评估与设计:研究现状及展望

胡殿印 潘锦超 米栋 闫成 王荣桥

胡殿印, 潘锦超, 米栋, 等. 航空发动机增材制造结构强度、寿命评估与设计:研究现状及展望[J]. 航空动力学报, 2022, 37(10):2112-2126 doi: 10.13224/j.cnki.jasp.20220465
引用本文: 胡殿印, 潘锦超, 米栋, 等. 航空发动机增材制造结构强度、寿命评估与设计:研究现状及展望[J]. 航空动力学报, 2022, 37(10):2112-2126 doi: 10.13224/j.cnki.jasp.20220465
HU Dianyin, PAN Jinchao, MI Dong, et al. Strength and lifetime assessment and design for additive manufacturing structures in aero-engine: review and prospects[J]. Journal of Aerospace Power, 2022, 37(10):2112-2126 doi: 10.13224/j.cnki.jasp.20220465
Citation: HU Dianyin, PAN Jinchao, MI Dong, et al. Strength and lifetime assessment and design for additive manufacturing structures in aero-engine: review and prospects[J]. Journal of Aerospace Power, 2022, 37(10):2112-2126 doi: 10.13224/j.cnki.jasp.20220465

航空发动机增材制造结构强度、寿命评估与设计:研究现状及展望

doi: 10.13224/j.cnki.jasp.20220465
基金项目: 国家自然科学基金(52022007)
详细信息
    作者简介:

    胡殿印(1980-),女,教授、博士生导师,博士,研究方向为发动机结构强度及疲劳可靠性。E-mail:hdy@buaa.edu.cn

  • 中图分类号: V252.2

Strength and lifetime assessment and design for additive manufacturing structures in aero-engine: review and prospects

  • 摘要:

    介绍了增材制造技术在航空发动机中的应用现状,重点论述航空发动机中增材制造结构强度、寿命评估与设计等关键技术的研究进展。分别从增材制造缺陷的无损检测方法与等效准则、考虑缺陷影响的关重件强度与寿命预测方法,以及创新结构一体化设计技术等方面探讨了现有研究进展、存在不足,以及发展趋势。结果表明:航空发动机中增材制造结构强度、寿命评估处于起步阶段,大多针对增材制造材料及简单结构的单一失效模式,仍需在复合疲劳失效、“结构特征-广布缺陷-表面形貌”多因素耦合失效等方面开展研究,从而发展适用于航空发动机增材制造结构的数据驱动评估方法、损伤容限设计方法以及专用试验技术。

     

  • 图 1  裂纹等效准则[24]

    Figure 1.  Crack equivalence criterion[24]

    图 2  电弧增材制造成形Al-Mg4.5Mn铝合金缺陷形貌[27]

    Figure 2.  Defect morphologies of Al-Mg4.5Mn aluminum alloy formed by wire arc additive manufacturing[27]

    图 3  PBF成形Ti-6Al-4V中缺陷等效直径与球度间关联

    Figure 3.  Relationship between defect equivalent diameter and sphericity in Ti-6Al-4V formed by PBF

    图 4  基于主成分分析的椭球等效准则[34]

    Figure 4.  Ellipsoidal equivalence criterion based on principal component analysis[34]

    图 5  多球等效准则[36]

    Figure 5.  Multi-sphere equivalence criterion[36]

    图 6  SLM成形AlSi10Mg铝合金试样内部的缺陷演化[42]

    Figure 6.  Defect evolution in AlSi10Mg aluminum alloy specimen formed by SLM

    图 7  结合损伤模型对不同工艺参数LENS成形316L不锈钢单轴拉伸曲线预测[50]

    Figure 7.  Damage model prediction of uniaxial tensile curve of 316L stainless steel formed by LENS with different process parameters[50]

    图 8  SLM成形2070A铝合金离心叶轮[51]

    Figure 8.  SLM formed 2070A aluminum centrifugal impeller[51]

    图 9  不同成形方向PBF AlSi10Mg铝合金试样疲劳极限预测[33]

    Figure 9.  Fatigue limit prediction of PBF AlSi10Mg aluminum alloy samples in different forming directions[33]

    图 10  考虑表面粗糙度与表面/亚表面缺陷互相作用时的有效缺陷参量等效方法

    Figure 10.  Effective defect parameter equivalence method considering the interaction between surface roughness and surface/sub surface defects

    图 11  SLM成形AlSi10Mg试样疲劳试验数据及预测结果[57]

    Figure 11.  Fatigue test data and prediction results of AlSi10Mg specimen formed by SLM[57]

    图 12  激光直接沉积316L不锈钢多阶段疲劳寿命预测[64]

    Figure 12.  Multi-stage fatigue lifetime prediction of 316L stainless steel formed by laser directly deposited[64]

    图 13  考虑连通性约束前后的涡轮盘拓扑优化结果[70]

    Figure 13.  Results of topology optimization of turbine disk before and after considering connectivity constraints[70]

    图 14  拓扑优化后增材制造航空发动机泄压门铰链[73]

    Figure 14.  Aero-engine pressure relief door hinge formed byadditive manufacturing after topology optimization[73]

    图 15  拓扑优化后航空发动机齿轮箱壳体结构[81]

    Figure 15.  Aero-engine gearbox shell structure after topology optimization[81]

    图 16  基于点阵结构的空心风扇叶片设计[88]

    Figure 16.  Design of hollow fan blade based on lattice structure[88]

    图 17  拓扑优化及多学科优化后的离心叶轮

    Figure 17.  Centrifugal impeller after topology optimization and multidisciplinary optimization

    图 18  拓扑优化及多学科优化后的涡轮叶盘

    Figure 18.  Turbine disk after topology optimization and multidisciplinary optimization

  • [1] 冀国锋,李俊励,杨进飞. 风扇/压气机增材制造技术的应用与发展趋势[J]. 航空动力,2020(2): 75-78.

    JI Guofeng,LI Junli,YANG Jinfei. Application and development trend of additive manufacturing technology for fan/compressor[J]. Aviation Power,2020(2): 75-78. (in Chinese)
    [2] 常坤,梁恩泉,张韧,等. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报,2021,35(3): 1-7. doi: 10.11896/cldb.19100153

    CHANG Kun,LIANG Enquan,ZHANG Ren,et al. Research status of additive manufacturing of metal materials and its application in civil aviation[J]. Material Guide,2021,35(3): 1-7. (in Chinese) doi: 10.11896/cldb.19100153
    [3] 邵冬. 罗罗的智能发动机愿景分析[J]. 航空动力,2020(3): 27-30.

    SHAO Dong. Rolls-Royce’s vision analysis of intelligent engine[J]. Aviation power,2020(3): 27-30. (in Chinese)
    [4] 张小伟. 金属增材制造技术在航空发动机领域的应用[J]. 航空动力学报,2016,31(1): 10-16. doi: 10.13224/j.cnki.jasp.2016.01.002

    ZHANG Xiaowei. Application of metal additive manufacturing technology in aeroengine field[J]. Journal of Aerospace Power,2016,31(1): 10-16. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.01.002
    [5] 王强,孙跃. 增材制造技术在航空发动机中的应用[J]. 航空科学技术,2014,25(9): 6-10. doi: 10.3969/j.issn.1007-5453.2014.09.002

    WANG Qiang,SUN Yue. Application of additive manufacturing technology in aeroengine[J]. Aviation Science and Technology,2014,25(9): 6-10. (in Chinese) doi: 10.3969/j.issn.1007-5453.2014.09.002
    [6] 汪文君,徐友良,吴雪蓓,等. 基于增材制造的微型涡喷发动机轻量化设计及试验[J]. 航空动力,2019(3): 20-22.

    WANG Wenjun,XU Youliang,WU Xuebei,et al. Lightweight design and test of micro turbojet engine based on additive manufacturing[J]. Aviation Power,2019(3): 20-22. (in Chinese)
    [7] Federal Aviation Administration. Guide for manufacturing and repairing formed turbine engine parts with powder bed melt additive: AC 33.15-4[S]. Washington DC: Federal Aviation Administration, 2018: 1-18.
    [8] European Aviation Safety Agency. Certification memorandum additive manufacturing: CM-S-008[S]. Cologne: European Aviation Safety Agency, 2021: 1-25.
    [9] SANAEI N,FATEMI A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review[J]. Progress in Materials Science,2021,117: 100724.1-100724.41.
    [10] SANAEI N,FATEMI A,PHAN N. Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing[J]. Materials and Design,2019,182: 108091.1-108091.22.
    [11] PLESSIS A,YADROITSAVA I,YADROITSEV I. Effects of defects on mechanical properties in metal additive manufacturing: a review focusing on X-ray tomography insights[J]. Materials and Design,2020,187: 108385.1-108385.19.
    [12] ZERBST U,MADIA M,KLINGER C,et al. Defects as a root cause of fatigue failure of metallic components: Ⅰ basic aspects[J]. Engineering Failure Analysis,2019,97: 777-792. doi: 10.1016/j.engfailanal.2019.01.055
    [13] BECKER T, KUMAR P, RAMAMURTY U. Fracture and fatigue in additively manufactured metals[J]. Acta Materialia, 2021, 219: 117240.1-11724041.
    [14] 吴正凯,张杰,吴圣川,等. 同步辐射X射线原位三维成像在金属增材制件缺陷评价中的应用[J]. 无损检测,2020,42(7): 46-50. doi: 10.11973/wsjc202007011

    WU Zhengkai,ZHANG Jie,WU Shengchuan,et al. Application of synchrotron radiation X-ray in situ three-dimensional imaging in defect evaluation of metal additive parts[J]. Nondestructive Testing,2020,42(7): 46-50. (in Chinese) doi: 10.11973/wsjc202007011
    [15] HONARVAR F,VARVANI-FARAHANI A. A review of ultrasonic testing applications in additive manufacturing: defect evaluation, material characterization, and process control[J]. Ultrasonics,2020,108: 106227.1-106227.15.
    [16] 韩立恒,巩水利,锁红波,等. A-100钢电子束熔丝成形件超声相控阵检测应用初探[J]. 航空制造技术,2016(8): 66-70. doi: 10.16080/j.issn1671-833x.2016.08.066

    HAN Liheng,GONG Shuili,SUO Hongbo,et al. Preliminary study on ultrasonic phased array testing of A-100 steel electron beam fuse forming parts[J]. Aviation Manufacturing Technology,2016(8): 66-70. (in Chinese) doi: 10.16080/j.issn1671-833x.2016.08.066
    [17] HANKS E, LIU D, PALAZOTTO A. Surface roughness of electron beam melting Ti-6Al-4V effect on ultrasonic testing[R]. AIAA 2016-1512, 2016.
    [18] RUDLIN J, CERNIGLIA D, SCAFID I, et al. Inspection of laser powder deposited layers[C]//Proceedings of 11th European Conference on Nondestructive Testing. Prague: European Federation for NDT, 2014: 1-10.
    [19] WALLER J, SAULSBERRY R, PARKER B, et al. Summary of NDE of additive manufacturing efforts in NASA [R]. NASA Report 20140009937, 2014.
    [20] 廉艳平, 王潘丁, 高杰, 等. 金属增材制造若干关键力学问题研究进展[J]. 力学进展, 2021, 51(3): 648-701.

    LIAN Yanping, WANG Panding, GAO Jie, et al. Research progress on some key mechanical problems of metal additive manufacturing[J]. Mechanical Progress, 2021, 51(3): 648-701. (in Chinese)
    [21] 吴圣川,吴正凯,胡雅楠,等. 同步辐射光源四维原位成像助力材料微结构损伤高分辨表征[J]. 机械工程材料,2020,44(6): 72-76. doi: 10.11973/jxgccl202006016

    WU Shengchuan,WU Zhengkai,HU Yanan,et al. High resolution characterization of microstructure damage in materials assisted by four-dimensional in-situ imaging with synchrotron radiation sources[J]. Mechanical Engineering Materials,2020,44(6): 72-76. (in Chinese) doi: 10.11973/jxgccl202006016
    [22] MAIRE E,WITHERS P. Quantitative X-ray tomography[J]. International Materials Reviews,2014,59(1): 1-43. doi: 10.1179/1743280413Y.0000000023
    [23] PLESSIS A,YADROITSAVA I,YADROITSEV I. X-Ray microcomputed tomography in additive manufacturing: a review of the current technology and applications[J]. 3D Printing and Additive Manufacturing,2018,5(3): 227-247. doi: 10.1089/3dp.2018.0060
    [24] MURAKAMI Y,NEMAT-NASSER S. Growth and stability of interacting surface flaws of arbitrary shape[J]. Engineering Fracture Mechanics,1983,17(3): 193-210. doi: 10.1016/0013-7944(83)90027-9
    [25] MURAKAMI Y. Additive manufacturing: effects of defects[M]. San Diego, US: Academic Press, 2019: 453-483.83.
    [26] EMANUELLI L,MOLINARI A,FACCHINI L,et al. Effect of heat treatment temperature and turning residual stresses on the plain and notch fatigue strength of Ti-6Al-4V additively manufactured via laser powder bed fusion[J]. International Journal of Fatigue,2022,162: 107009.1-107009.12.
    [27] XIE Cheng,WU Shengchuan,YU Yukuang,et al. Defect-correlated fatigue resistance of additively manufactured Al-Mg4.5Mn alloy with in situ micro-rolling[J]. Journal of Materials Processing Technology,2021,291: 117039.1-117039.13.
    [28] HU Yanan,WU Shengchuan,WU Zhengkai,et al. A new approach to correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy[J]. International Journal of Fatigue,2020,136: 105584.1-105584.11.
    [29] LEUDERS S,VOLLMER M,BRENNE F,et al. Fatigue strength prediction for titanium alloy TiAl6V4 manufactured by selective laser melting[J]. Metallurgical and Materials Transactions A,2015,46(9): 3816-3823. doi: 10.1007/s11661-015-2864-x
    [30] LEUDERS S,LIENEKE T,LAMMERS S,et al. On the fatigue properties of metals manufactured by selective laser melting: the role of ductility[J]. Journal of Materials Research,2014,29(17): 1911-1919. doi: 10.1557/jmr.2014.157
    [31] LEUDERS S,THONE M,RIEMER A,et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance[J]. International Journal of Fatigue,2013,48: 300-307. doi: 10.1016/j.ijfatigue.2012.11.011
    [32] NADOT Y,NADOT-MARTIN C,KAN W,et al. Predicting the fatigue life of an AlSi10Mg alloy manufactured via laser powder bed fusion by using data from computed tomography[J]. Additive Manufacturing,2020,32: 100899.1-100899.11.
    [33] WU Zhengkai,WU Shengchuan,BAO Jianguang,et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. International Journal of Fatigue,2021,151: 106317.1-106317.14.
    [34] HU Dianyin,PAN Jinchao,MI Dong,et al. Prediction of anisotropic LCF behavior for SLM Ti-6Al-4V considering the spatial orientation of defects[J]. International Journal of Fatigue,2022,158: 106734.1-106734.12.
    [35] VINCENT M,NADOT-MARTIN C,NADOT Y,et al. Fatigue from defect under multiaxial loading: defect stress gradient (DSG) approach using ellipsoidal equivalent inclusion method[J]. International Journal of Fatigue,2014,59: 176-187. doi: 10.1016/j.ijfatigue.2013.08.027
    [36] 战立鼎. 基于断层扫描成像的增材制造材料高周疲劳极限预测方法[D]. 北京: 北京航空航天大学, 2022.

    ZHAN Liding. High cycle fatigue limit prediction method for additive manufacturing materials based on tomography [D]. Beijing: Beihang University, 2022. (in Chinese)
    [37] YASIN A,SYLVAIN D,PAULINE D,et al. Compression behavior of lattice structures produced by selective laser melting: X-ray tomography based experimental and finite element approaches[J]. Acta Materialia,2018,159: 395-407. doi: 10.1016/j.actamat.2018.08.030
    [38] WANG Panding,ZHOU Hao,ZHANG Limin,et al. In situ X-ray micro-computed tomography study of the damage evolution of prefabricated through-holes in SLM-Printed AlSi10Mg alloy under tension[J]. Journal of Alloys and Compounds,2020,821: 153576.1-153576.8.
    [39] 虞雨洭,吴正凯,吴圣川. 高分辨三维成像原位试验机研制进展及应用[J]. 中国材料进展,2021,40(2): 90-104. doi: 10.7502/j.issn.1674-3962.202007031

    YU Yuling,WU Zhengkai,WU Shengchuan. Development and application of high resolution 3D imaging in situ testing machine[J]. Material progress in China,2021,40(2): 90-104. (in Chinese) doi: 10.7502/j.issn.1674-3962.202007031
    [40] BALE A,HABOUB A,MACDOWELL A,et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1 600 °C[J]. Nature Materials,2013,12(1): 40-46. doi: 10.1038/nmat3497
    [41] DEZECOT S,BUFFIERE J,KOSTER A,at al. In situ 3D characterization of high temperature fatigue damage mechanisms in a cast aluminum alloy using synchrotron X-ray tomography[J]. Scripta Materialia,2016,113: 254-258. doi: 10.1016/j.scriptamat.2015.11.017
    [42] BAO Jianguang,WU Shengchuan,WITHERS P,at al. Defect evolution during high temperature tension-tension fatigue of SLM AISi10Mg alloy by synchrotron tomography[J]. Materials Science and Engineering:A,2020,792: 139809.1-139809.13.
    [43] HU Dianyin,PAN Jinchao,MAO Jianxing,et al. Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography[J]. Materials and Design,2021,198: 109353.1-109353.9.
    [44] WAN Hualiang,WANG Qizhi,JIA Chengxue,et al. Multi-scale damage mechanics method for fatigue life prediction of additive manufacture structures of Ti-6Al-4V[J]. Materials Science and Engineering A,2016,669: 269-278. doi: 10.1016/j.msea.2016.05.073
    [45] GURSON A. Continuum theory of ductile rupture by void nucleation and growth: Part 1 yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology1977, 99(1): 2-15.
    [46] TVERGAARD V,NEEDLEMAN A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica,1984,32(1): 157-169. doi: 10.1016/0001-6160(84)90213-X
    [47] YANG Xuan,LI Yazhi,JIANG Wei,et al. Ductile fracture prediction of additive manufactured Ti6Al4V alloy based on an extended GTN damage model[J]. Engineering Fracture Mechanics,2021,256: 107989.1-107989.12.
    [48] HORSTEMEYER M,GOKHALE A. A void-crack nucleation model for ductile metals[J]. International Journal of Solids and Structures,1999,36(33): 5029-5055. doi: 10.1016/S0020-7683(98)00239-X
    [49] POTIRNICHE G,HORSTEMEYER M,LING X. An internal state variable damage model in crystal plasticity[J]. Mechanics of Materials,2007,39(10): 941-952. doi: 10.1016/j.mechmat.2007.04.004
    [50] YADOLLAHI A,SHAMSAEI N,HAMMI Y,et al. Quantification of tensile damage evolution in additive manufactured austenitic stainless steels[J]. Materials Science and Engineering A,2016,657: 399-405. doi: 10.1016/j.msea.2016.01.067
    [51] 文长龙. 3D打印空心离心叶轮破裂转速测试试验报告[R]. 湖南 株洲: 中国航发湖南动力机械研究所, 2021.

    WEN Changlong. The test report on the fracture speed of 3D print hollow centrifugal impeller [R]. Zhuzhou Hunan: Hunan Aviation Powerplant Research Institute, Aero Engine Corporation of China, 2021. (in Chinese)
    [52] ROMANO S,BRANDAO A,GUMPINGER J,et al. Qualification of AM parts: extreme value statistics applied to tomographic measurements[J]. Materials and Design,2017,131: 32-48. doi: 10.1016/j.matdes.2017.05.091
    [53] GÜNTHER J,KREWERTH D,LIPPMANN T,et al. Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime[J]. International Journal of Fatigue,2017,94: 236-245. doi: 10.1016/j.ijfatigue.2016.05.018
    [54] MOLAEI R,FATEMI A,SANAEI N,et al. Fatigue of additive manufactured Ti-6Al-4V Part Ⅱ: the relationship between microstructure, material cyclic properties, and component performance[J]. International Journal of Fatigue,2020,132,105363: 1-19.
    [55] LE V,PESSARD E,MOREL F,et al. Interpretation of the fatigue anisotropy of additively manufactured Ti-6Al-4V alloys via a fracture mechanics approach[J]. Engineering Fracture Mechanics,2019,214: 410-426. doi: 10.1016/j.engfracmech.2019.03.048
    [56] LE V,PESSARD E,MOREL F,et al. Fatigue behaviour of additively manufactured Ti-6Al-4V alloy: the role of defects on scatter and statistical size effect[J]. International Journal of Fatigue,2020,140: 105811.1-105811.16.
    [57] BERETTA S,GARGOURIMOTLAGH M,FOLETTI S,et al. Fatigue strength assessment of as built AlSi10Mg manufactured by SLM with different build orientations[J]. International Journal of Fatigue,2020,139: 105737.1-105737.16.
    [58] TORRIES B,STERLING A J,SHAMSAEI N,et al. Utilization of a microstructure sensitive fatigue model for additively manufactured Ti-6Al-4V[J]. Rapid Prototyping Journal,2016,22(5): 817-825. doi: 10.1108/RPJ-11-2015-0168
    [59] BISWAL R,ZHANG X,SHAMIR M,et al. Interrupted fatigue testing with periodic tomography to monitor porosity defects in wire arc additive manufactured Ti-6Al-4V[J]. Additive Manufacturing,2019,28: 517-527. doi: 10.1016/j.addma.2019.04.026
    [60] XUE Yibin,BURTON C,HORSTEMEYER M,et al. Multistage fatigue modeling of cast A356-T6 and A380-F aluminum alloys[J]. Metallurgical and Materials Transactions B,2007,38(4): 601-606. doi: 10.1007/s11663-007-9062-1
    [61] MCDOWELL D,GALL K,HORSTEMEYER M,et al. Microstructure-based fatigue modeling of cast A356-T6 alloy[J]. Engineering Fracture Mechanics,2003,70(1): 49-80. doi: 10.1016/S0013-7944(02)00021-8
    [62] MCDOWELL D. Simulation-based strategies for microstructure-sensitive fatigue modeling[J]. Materials Science and Engineering:A,2007,468: 4-14.
    [63] XUE Yibin,MCDOWELL D,HORSTEMEYER M,et al. Microstructure-based multistage fatigue modeling of aluminum alloy 7075-T651[J]. Engineering Fracture Mechanics,2007,74(17): 2810-2823. doi: 10.1016/j.engfracmech.2006.12.031
    [64] XUE Yibin,HORSTEMEYER M,MCDOWELL D,et al. Microstructure-based multistage fatigue modeling of a cast AE44 magnesium alloy[J]. International Journal of Fatigue,2007,29(4): 666-676. doi: 10.1016/j.ijfatigue.2006.07.005
    [65] GUEST J,PRÉVOST J,BELYTSCHKO T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions[J]. International Journal for Numerical Methods in Engineering,2004,61(2): 1-7.
    [66] GUEST J. Imposing maximum length scale in topology optimization[J]. Structural and Multidisciplinary Optimization,2009,37(5): 463-473. doi: 10.1007/s00158-008-0250-7
    [67] BRACKETT D, ASHCROFT I, HAGUE R. Topology optimization for additive manufacturing[C]//Proceedings of 2011 International Solid Freeform Fabrication Symposium. Austin, US: AHS International, 2011: 1-8.
    [68] LIU Shutian,LI Quhao,CHEN Wwenjiong,et al. An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures[J]. Frontiers of Mechanical Engineering,2015,10(2): 126-137. doi: 10.1007/s11465-015-0340-3
    [69] LI Quhao,CHEN Wenjiong,LIU Shutian,et al. Structural topology optimization considering connectivity constraint[J]. Structural and Multidisciplinary Optimization,2016,54(4): 971-984. doi: 10.1007/s00158-016-1459-5
    [70] WANG Bo,WANG Guangming,SHI Yongxin,et al. Stress-constrained thermo-elastic topology optimization of axisymmetric disks considering temperature-dependent material properties[J]. Mechanics of Advanced Materials and Structures,2021,28: 2000080.1-2000080.9.
    [71] 韩永生, 徐斌, 赵磊. 基于应力的几何非线性结构拓扑优化[C]//中国力学大会论文集. 杭州: 中国力学大会, 2019, 1-9.
    [72] 赖斌皓. 基于OptiStruct的涡轮盘拓扑优化设计技术研究[D]. 长沙: 湖南大学, 2019.

    LAI Binhao. Research on topology optimization design technology of turbine disk based on Optistruct [D]. Changsha: Hunan University, 2019. (in Chinese)
    [73] 侯亮,柴象海,白国娟,等. 航空发动机短舱泄压门冲击载荷结构拓扑优化技术研究[J]. 航空科学技术,2022,33(1): 58-65. doi: 10.19452/j.issn1007-5453.2022.01.007

    HOU Liang,CHAI Xianghai,BAI Guojuan,et al. Research on topology optimization technology of impact load structure for pressure relief valve of aeroengine nacelle[J]. Aeronautical Science and technology,2022,33(1): 58-65. (in Chinese) doi: 10.19452/j.issn1007-5453.2022.01.007
    [74] 张一雨,郑百林,吴一帆,等. 鸟撞工况下HCA动态拓扑优化整级叶片的数值模拟[J]. 推进技术,2019,40(2): 431-440. doi: 10.13675/j.cnki.tjjs.180058

    ZHANG Yiyu,ZHENG Bailin,WU Yifan,et al. Numerical simulation of HCA dynamic topology optimization integral stage blade under bird impact condition[J]. Propulsion Technology,2019,40(2): 431-440. (in Chinese) doi: 10.13675/j.cnki.tjjs.180058
    [75] 黄协思. 疲劳约束下航空发动机涡轮盘结构优化设计[D]. 成都: 电子科技大学, 2020.

    HUANG Xiesi. Structural optimization design of aeroengine turbine disk under fatigue constraint [D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese)
    [76] 邢广鹏,孙志刚,崔向敏,等. 多工况载荷下航空发动机支架拓扑优化设计[J]. 航空动力学报,2020,35(11): 2248-2262. doi: 10.13224/j.cnki.jasp.2020.11.002

    XING Guangpeng,SUN Zhigang,CUI Xiangmin,et al. Topology optimization design of aeroengine support under multi load conditions[J]. Journal of Aerospace Power,2020,35(11): 2248-2262. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.11.002
    [77] 邓小雷,盛泽枫,张江林,等. 基于不规则元胞的主轴温度-结构场耦合热拓扑优化设计方法[J]. 浙江大学学报(工学版),2020,54(1): 23-32. doi: 10.3785/j.issn.1008-973X.2020.01.003

    DENG Xiaolei,SHENG Zefeng,ZHANG Jianglin,et al. Optimization design method of spindle temperature structure field coupling thermal topology based on irregular cell[J]. Journal of Zhejiang University (Engineering Edition),2020,54(1): 23-32. (in Chinese) doi: 10.3785/j.issn.1008-973X.2020.01.003
    [78] PICELLI R,RANJBARZADEH S,SIVAPURAM R,et al. Topology optimization of binary structures under design-dependent fluid-structure interaction loads[J]. Structural and Multidisciplinary Optimization,2020,62(4): 2101-2116. doi: 10.1007/s00158-020-02598-0
    [79] YU Minghao,RUAN Shilun,GU Junfeng,et al. Three-dimensional topology optimization of thermal-fluid-structural problems for cooling system design[J]. Structural and Multidisciplinary Optimization,2020,62(6): 3347-3366. doi: 10.1007/s00158-020-02731-z
    [80] FEPPON F,ALLAIRE G,DAPOGNY C,et al. Topology optimization of thermal fluid–structure systems using body-fitted meshes and parallel computing[J]. Journal of Computational Physics,2020,417: 109574.1-109574.30.
    [81] 牟佳信,邢彬,郭梅,等. 考虑热、弹、流耦合的航空发动机齿轮箱壳体拓扑优化分析[J]. 机械传动,2022,46(2): 127-134. doi: 10.16578/j.issn.1004.2539.2022.02.021

    MU Jiaxin,XING Bin,GUO Mei,et al. Topology optimization analysis of aeroengine gearbox shell considering thermal, elastic and fluid coupling[J]. Mechanical Transmission,2022,46(2): 127-134. (in Chinese) doi: 10.16578/j.issn.1004.2539.2022.02.021
    [82] KIM J,PAULINO G. Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials[J]. Journal of Apply Mechanics,2002,69(4): 502-514. doi: 10.1115/1.1467094
    [83] RADMAN A,HUANG X,XIE Y. Topology optimization of functionally graded cellular materials[J]. Journal of Materials Science,2013,48(4): 1503-1510. doi: 10.1007/s10853-012-6905-1
    [84] LIU Pai,LUO Yangjun,KANG Zhan. Multi-material topology optimization considering interface behavior via XFEM and level set method[J]. Computer Methods in Applied Mechanics and Engineering,2016,308: 113-133. doi: 10.1016/j.cma.2016.05.016
    [85] 李雯竹. 基于功能梯度材料的涡轮盘拓扑优化方法研究[D]. 北京: 北京航空航天大学, 2022.

    LI Wenzhu. Study on topology optimization method of turbine disk based on functionally graded materials[D]. Beijing: Beihang University, 2022. (in Chinese)
    [86] YAN Jun,ZHANG Chenguang,HUO Sixu,et al. Experimental and numerical simulation of bird-strike performance of lattice-material-infilled curved plate[J]. Chinese Journal of Aeronautics,2021,34(8): 245-257. doi: 10.1016/j.cja.2020.09.026
    [87] 张严. 超轻质多孔结构的多尺度拓扑优化方法研究[D]. 武汉: 华中科技大学, 2020.

    ZHANG Yan. Research on multi-scale topology optimization method for ultra light porous structures [D]. Wuhan: Huazhong University of Science and Technology, 2020. (in Chinese)
    [88] PHAM M,LIU C,TODD I,et al. Damage-tolerant architected materials inspired by crystal microstructure[J]. Nature,2019,565(7739): 305-311. doi: 10.1038/s41586-018-0850-3
    [89] 米栋, 文长龙. 涡喷发动机转子部件轻量化设计及验证[R]. 湖南 株洲: 中国航发湖南动力机械研究所, 2022.

    MI Dong, WEN Changlong. Lightweight design and verification of turbojet engine rotor components[R]. Zhuzhou Hunan: Hunan Aviation Powerplant Research Institute, Aero Engine Corporation of China, 2022. (in Chinese)
  • 加载中
图(18)
计量
  • 文章访问数:  439
  • HTML浏览量:  194
  • PDF量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 网络出版日期:  2022-09-21

目录

    /

    返回文章
    返回