留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

管式减涡器阻尼结构减振特性及设计方法

牛南轲 漆文凯 许正华

牛南轲, 漆文凯, 许正华. 管式减涡器阻尼结构减振特性及设计方法[J]. 航空动力学报, 2024, 39(6):20220469 doi: 10.13224/j.cnki.jasp.20220469
引用本文: 牛南轲, 漆文凯, 许正华. 管式减涡器阻尼结构减振特性及设计方法[J]. 航空动力学报, 2024, 39(6):20220469 doi: 10.13224/j.cnki.jasp.20220469
NIU Nanke, QI Wenkai, XU Zhenghua. Damping characteristics and design method of tubular vortex reducer damper[J]. Journal of Aerospace Power, 2024, 39(6):20220469 doi: 10.13224/j.cnki.jasp.20220469
Citation: NIU Nanke, QI Wenkai, XU Zhenghua. Damping characteristics and design method of tubular vortex reducer damper[J]. Journal of Aerospace Power, 2024, 39(6):20220469 doi: 10.13224/j.cnki.jasp.20220469

管式减涡器阻尼结构减振特性及设计方法

doi: 10.13224/j.cnki.jasp.20220469
详细信息
    作者简介:

    牛南轲(1998-),男,硕士生,主要从事航空发动机结构强度与振动研究

    通讯作者:

    漆文凯(1970-),男,副教授,博士,主要从事航空发动机结构动力学研究。E-mail:qwkai@nuaa.edu.cn

  • 中图分类号: V23.1

Damping characteristics and design method of tubular vortex reducer damper

  • 摘要:

    为了抑制管式减涡器工作中的振动,开展对应的阻尼结构设计与减振特性研究工作。针对管式减涡器,总结了阻尼结构的设计参数,在此基础上,归纳了管式减涡器阻尼结构的设计流程。使用该方法对某型发动机减涡器进行阻尼结构设计和减振特性计算,并进行试验验证。结果表明,该方法设计的阻尼器具有良好的阻尼减振效果,可以将关键点应力水平降低80%以上。并且试验得到的减振效果与达到最优减振效果的正压力区间都与计算结果接近,验证了该方法在预测减振特性时的准确性。

     

  • 图 1  减涡器及阻尼管模型

    Figure 1.  Model of vortex reducer and damping tube

    图 2  阻尼管设计参数

    Figure 2.  Design parameters of damping tube

    图 3  阻尼管设计流程图

    Figure 3.  Design process of damping tube

    图 4  力与位移迟滞曲线

    Figure 4.  Hysteresis curve of force and displacement

    图 5  计算流程图

    Figure 5.  Calculation flow chart

    图 6  3种长度的阻尼管

    Figure 6.  Damping tube of 3 lengths

    图 7  减涡器有限元模型

    Figure 7.  Finite element model of vortex reducer

    图 8  不同开口数下接触压力沿周向分布图

    Figure 8.  Circumferential distribution of contact pressure with different opening numbers

    图 9  Matrix27 单元在减涡器的周向分布

    Figure 9.  Circumferential distribution of MATRIX27 unit in vortex reducer

    图 10  激励点及响应点位置

    Figure 10.  Location of excitation point and response point

    图 11  带40%管长阻尼管的减涡器幅频特性曲线(F=5 N)

    Figure 11.  Amplitude frequency characteristic curves of vortex reducer with 40% tube length damping tube (F=5 N)

    图 12  带40%管长阻尼管的减涡器幅频特性曲线 (F=10 N)

    Figure 12.  Amplitude frequency characteristic curves of vortex reducer with 40% tube length damping tube (F=10 N)

    图 13  带40%管长阻尼管的减涡器幅频特性曲线 (F=20 N)

    Figure 13.  Amplitude frequency characteristic curves of vortex reducer with 40% tube length damping tube (F=20 N)

    图 14  带40%管长阻尼管减涡器不同激振力下相对共振峰值随无量纲正压力变化曲线

    Figure 14.  Variation curves of relative resonance peak value with dimensionless normal pressure under different excitation forces of tube vortex reducer with 40% tube length damping tube

    图 15  工作载荷下40%管长阻尼管应力分布

    Figure 15.  Stress distribution of 40% tube length damping tube under working load

    图 16  试验件

    Figure 16.  Test piece

    图 17  试验台

    Figure 17.  Test bench

    图 18  带40%管长阻尼管的减涡器幅频特性曲线(a=0.65g

    Figure 18.  Amplitude frequency characteristic curves of vortex reducer with 40% tube length damping tube (a=0.65g

    图 19  带40%管长阻尼管的减涡器幅频特性曲线(a=1.05g

    Figure 19.  Amplitude frequency characteristic curves of vortex reducer with 40% tube length damping tube (a=1.05g

    图 20  带40%管长阻尼管的减涡器幅频特性曲线(a=1.5g

    Figure 20.  Amplitude frequency characteristic curves of vortex reducer with 40% tube length damping tube (a=1.5g

    图 21  带 40%管长阻尼管减涡器不同激励加速度下相对共振峰值随相对正压力变化曲线

    Figure 21.  Variation curves of relative resonance peak value with relative normal pressure under different excitation accelerations of vortex reducer with 40% tube length damping tube

    表  1  不同管长阻尼管的设计开口宽度

    Table  1.   Design opening width of damping tube with different tube lengths

    阻尼管管长/%周向位移/mm设计开口宽度/mm
    400.250.5
    600.410.8
    800.561.0
    下载: 导出CSV

    表  2  阻尼管减振特性分析结果汇总

    Table  2.   Analysis results of damping characteristics of damping tube

    阻尼管管长/%最优减振效果/%最优无量纲正压力
    4083.1725
    6077.8950
    8073.1520
    下载: 导出CSV

    表  3  不同管长阻尼管过盈量设计值

    Table  3.   Design values of interference of damping tubes with different tube lengths

    管长/%设计过盈量/mm接触压力/N最优正压力/N
    400.011132.57125
    600.038255.22250
    800.035103.19100
    下载: 导出CSV

    表  4  最优正压力结果对比

    Table  4.   Comparison of optimal normal pressure results

    阻尼管管长/%计算最优
    无量纲正压力
    试验最优
    正压力区间
    402510~30
    605020~100
    802050~150
    下载: 导出CSV
  • [1] 吴丽军,陈潇,邓双国,等. 减涡器流阻特性计算分析[J]. 燃气轮机技术,2014,27(3): 37-43.

    WU Lijun,CHEN Xiao,DENG Shuangguo,et al. Flow resistance characteristics of vortex reducer computation and analysis[J]. Gas Turbine Technology,2014,27(3): 37-43. (in Chinese)
    [2] HIDE R. On source-sink flows in a rotating fluid[J]. Journal of Fluid Mechanics,1968,32(4): 737-764. doi: 10.1017/S002211206800100X
    [3] FIROUZIAN M,OWEN J M,PINCOMBE J R,et al. Flow and heat transfer in a rotating cylindrical cavity with a radial inflow of fluid[J]. International Journal of Heat and Fluid Flow,1986,7(1): 21-27. doi: 10.1016/0142-727X(86)90037-8
    [4] 罗翔,白阳,何建. 压气机盘腔径向引流减涡器研究综述[J]. 南京航空航天大学学报,2019,51(4): 427-437.

    LUO Xiang,BAI Yang,HE Jian. Review of vortex reducer in radial inflow of compressor disk cavity[J]. Journal of Nanjing University of Aeronautics and Astronautics,2019,51(4): 427-437. (in Chinese)
    [5] GÜNTHER A, UFFRECHT W, KAISER E, et al. Experimental analysis of varied vortex reducer configurations for the internal air system of jet engine gas turbines[R]. ASME Paper GT2008-50738, 2008.
    [6] LIANG Zhirong,LUO Xiang,FENG Ye,et al. Experimental investigation of pressure losses in a co-rotating cavity with radial inflow employing tubed vortex reducers with varied nozzles[J]. Experimental Thermal and Fluid Science,2015,66: 304-315. doi: 10.1016/j.expthermflusci.2015.03.008
    [7] 赵义祯,魏嵩,毛军逵,等. 管式减涡器入口局部压降和流阻特性[J]. 航空动力学报,2021,36(1): 42-52. doi: 10.13224/j.cnki.jasp.2021.01.006

    ZHAO Yizhen,WEI Song,MAO Junkui,et al. Local pressure drop and flow resistance characteristic at entrance of tubed vortex reducer[J]. Journal of Aerospace Power,2021,36(1): 42-52. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.01.006
    [8] FARTHING P R,OWEN J M. De-swirled radial inflow in a rotating cavity[J]. International Journal of Heat and Fluid Flow,1991,12(1): 63-70. doi: 10.1016/0142-727X(91)90009-K
    [9] 魏大盛,马梦弟,王延荣,等. 减涡器破裂转速预测方法及试验验证[J]. 航空动力学报,2022,37(4): 704-710.

    WEI Dasheng,MA Mengdi,WANG Yanrong,et al. Prediction method and experimental verification of the burst speed of the vortex reducer[J]. Journal of Aerospace Power,2022,37(4): 704-710. (in Chinese)
    [10] ALFORD J S. Protection of labyrinth seals from flexural vibration[J]. Journal of Engineering for Power,1964,86(2): 141-147. doi: 10.1115/1.3677564
    [11] 孙世威. 旋转薄壁圆筒干摩擦减振设计研究[D]. 沈阳: 东北大学, 2013.

    SUN Shiwei. Rotating thin-walled cylinder dry friction damping design studies[D]. Shenyang: Northeastern University, 2013. (in Chinese)
    [12] 温伟,漆文凯. 基于整体叶盘环形摩擦阻尼器减振分析及设计[J]. 航空动力学报,2020,35(4): 777-782.

    WEN Wei,QI Wenkai. Vibration reduction analysis and design of friction ring damper in blisk[J]. Journal of Aerospace Power,2020,35(4): 777-782. (in Chinese)
    [13] 林茂山. 短柱壳—约束层阻尼系统建模与减振机理研究[D]. 沈阳: 东北大学, 2011.

    LIN Maoshan. The modeling and damping mechanism research on constrained layer damping short cylindrical shell system[D]. Shenyang: Northeastern University, 2011. (in Chinese)
    [14] 曾亮,李琳. 带有阻尼环(套筒)的篦齿封严装置动力响应特性实验[J]. 航空动力学报,2008,23(10): 1813-1818,1820.

    ZENG Liang,LI Lin. Experiments on dynamic response of labyrinth air seals with damping-ring/sleeves[J]. Journal of Aerospace Power,2008,23(10): 1813-1818,1820. (in Chinese)
    [15] DEN HARTOG J P. Forced vibrations with combined coulomb and viscous friction[J]. Journal of Fluids Engineering,1931,53(2): 107-115. doi: 10.1115/1.4022656
    [16] DUAN Y, ZANG C, PETROV E. Analysis of forced response of high-mode vibrations of mistuned bladed discs using reduced-order modelling methodology[C]//26th International Conference on Noise and Vibration Engineering. Leuven, Belgium: KU Leuven, 2014: 2551-2564.
    [17] 漆文凯. 涡轮转子叶片叶根阻尼装置减振特性分析及实验研究[D]. 南京: 南京航空航天大学, 2005.

    QI Wenkai. Analysis and experimental study on vibration reduction characteristics of turbine rotor blade root damping device[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005. (in Chinese)
    [18] 漆文凯,高德平. 摩擦阻尼减振设计中的局部滑动问题[J]. 航空学报,2006,27(5): 805-809.

    QI Wenkai,GAO Deping. Microslip study on friction damping and its application in design of vibration reduction[J]. Acta Aeronautica et Astronautica Sinica,2006,27(5): 805-809. (in Chinese)
    [19] 吴绵绵. 涡轮叶片摩擦阻尼减振设计方法研究[D]. 南京: 南京航空航天大学, 2010.

    WU Mianmian. A vibration-reduced design method for turbine blade with friction damper[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)
    [20] 张云娟. 涡轮叶片干摩擦阻尼减振特性研究[D]. 南京: 南京航空航天大学, 2014.

    ZHANG Yunjuan. Research on dynamic characteristic of turbine blade with friction damper[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese)
    [21] 陈俊杰. 带冠叶盘干摩擦阻尼减振特性研究[D]. 南京: 南京航空航天大学, 2015.

    CHEN Junjie. Research on vibration characteristicof shrouded bladed disk with friction damper[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
  • 加载中
图(21) / 表(4)
计量
  • 文章访问数:  55
  • HTML浏览量:  45
  • PDF量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 网络出版日期:  2023-10-13

目录

    /

    返回文章
    返回