留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针栓式变推力固体火箭发动机中针栓所受载荷

武婷文 王健儒 白彦军 张璞

武婷文, 王健儒, 白彦军, 等. 针栓式变推力固体火箭发动机中针栓所受载荷[J]. 航空动力学报, 2024, 39(7):20220472 doi: 10.13224/j.cnki.jasp.20220472
引用本文: 武婷文, 王健儒, 白彦军, 等. 针栓式变推力固体火箭发动机中针栓所受载荷[J]. 航空动力学报, 2024, 39(7):20220472 doi: 10.13224/j.cnki.jasp.20220472
WU Tingwen, WANG Jianru, BAI Yanjun, et al. Force on the pintle of pintle variable thrust solid rocket motor[J]. Journal of Aerospace Power, 2024, 39(7):20220472 doi: 10.13224/j.cnki.jasp.20220472
Citation: WU Tingwen, WANG Jianru, BAI Yanjun, et al. Force on the pintle of pintle variable thrust solid rocket motor[J]. Journal of Aerospace Power, 2024, 39(7):20220472 doi: 10.13224/j.cnki.jasp.20220472

针栓式变推力固体火箭发动机中针栓所受载荷

doi: 10.13224/j.cnki.jasp.20220472
详细信息
    作者简介:

    武婷文(1997-),女,硕士生,主要从事针栓式变推力发动机研究。E-mail:wtw17801197808@163.com

  • 中图分类号: V435

Force on the pintle of pintle variable thrust solid rocket motor

  • 摘要:

    为研究不同因素对针栓式变推力固体火箭发动机内流场流动特性、发动机性能参数及针栓所受载荷的影响,探究其控制性能,采用数值仿真的方法,对不同针栓型面及针栓尾部凹槽设计下的喷管内流场进行计算研究。结果表明:针栓式变推力固体火箭发动机的推力调节范围很大,针栓受力变化也大;针栓型面的改变对针栓载荷无显著影响,最大载荷下降28%;针栓尾部凹槽的设计可以在较大程度上平衡针栓载荷,最大载荷下降56%;针栓阀体导流槽的设计对于针栓所受载荷的降低有显著作用,最大载荷下降91%,大大增强了针栓式变推力固体火箭发动机的控制性能。

     

  • 图 1  针栓式变推力固体火箭发动机结构示意图

    Figure 1.  Schematic of structure of pintle variable thrust solid rocket motor

    图 2  针栓型面示意图

    Figure 2.  Profile surface of pintle

    图 3  10种针栓型面At.eq随针栓行程的变化曲线

    Figure 3.  Variations of At.eq with pintle position of 10 pintle profiles

    图 4  针栓尾部凹槽示意图

    Figure 4.  Tail groove of pintle

    图 5  不同数量网格计算得到的推力和针栓载荷值

    Figure 5.  Thrust and pintle load for different mesh number

    图 6  针栓式变推力固体火箭发动机计算网格

    Figure 6.  Mesh of pintle variable thrust solid rocket motor

    图 7  推力Ft和作用在针栓上的力Fp示意图

    Figure 7.  Schematic diagram of Ft and force Fp in pintle motor

    图 8  不同针栓行程下的马赫数分布云图

    Figure 8.  Mach number contours at different pintle positions

    图 9  不同针栓行程下的针栓所受载荷

    Figure 9.  Pintle load at different pintle positions

    图 10  不同型面针栓介入下的喷管内流场马赫数分布图

    Figure 10.  Mach number contours of inner flow field with different profile pintles

    图 11  不同型面针栓作用下出口马赫数和径向速度分布

    Figure 11.  Outlet Mach number and radial velocity distribution with different profile pintles

    图 12  针栓受力简图

    Figure 12.  Sketch of force on pintle

    图 13  不同凹槽参数下的局部压力云图

    Figure 13.  Pressure contours with different groove parameters

    图 14  位置1和位置4不同凹槽深度下的${F_{\text{p}}}$

    Figure 14.  ${F_{\text{p}}}$ with different groove height at position 1 and 4

    图 15  带有导流槽结构的针栓型面示意图

    Figure 15.  Pintle profiles with drainage design

    图 16  内流场马赫数云图

    Figure 16.  Mach number contours of inner flow field

    图 17  内流场压力云图

    Figure 17.  Pressure contours of inner flow field

    表  1  针栓式变推力固体火箭发动机几何参数

    Table  1.   Geometric parameters of pintle variable thrust solid rocket motor mm

    参数数值
    燃烧室半径Rc45
    喉部半径Rt17.5
    喷管出口半径Re53.24
    收敛段长度Lc32
    扩张段长度Le82
    喉部平直段长度Lt5
    发动机总长L197
    针栓半径Rp17
    针栓头部高度h20
    针栓头部半径R01
    下载: 导出CSV

    表  2  燃气参数

    Table  2.   Parameters of gas

    γTc/Kcp/(J/(kg·K))MRg/(J/(kg·K))
    1.251998.51 95721395.9
    下载: 导出CSV

    表  3  针栓4个位置的数据

    Table  3.   Data for 4 pintle positions

    参数位置1位置2位置3位置4
    s/mm011.8015.3020.50
    At,eq/mm2853.96424.82297.4782.74
    $\dot m$/(kg/s)6.243.172.200.64
    Ft/N16314783359671633
    Is/(N·s/kg)2614247127122552
    下载: 导出CSV

    表  4  不同型面针栓作用的发动机性能计算结果比较

    Table  4.   Motor performance with different profile pintles

    针栓型面Ft/NIs/(N·s/kg)Fp/Np0,e/p0,c
    A1633.622678.70481.580.79
    B770.012036.40−13.920.83
    C1120.482618.10254.370.80
    D1640.462702.33459.860.83
    E1643.302666.01457.630.75
    F1660.662688.26467.680.80
    G1650.942698.42465.060.80
    H1580.552726.96447.720.79
    I1199.162651.02301.920.76
    J1671.682673.12468.970.77
    下载: 导出CSV

    表  5  针栓所受载荷总结

    Table  5.   Pintle load summary

    针栓型面位置1 位置4
    ${F_{\text{p}}}$/N${F_{\text{p} } }/{F_{ {\text{t,max} } } }$${F_{\text{p}}}$/N$\left| { {F_{\text{p} } }/{F_{ {\text{t,max} } } }} \right|$
    初始型面50711 4810.09
    ${h_{\text{c}}}$= 2 mm31680.62−12490.25
    ${h_{\text{c}}}$= 3 mm24030.47−20230.40
    ${h_{\text{c}}}$= 4 mm16910.33−27440.54
    导流槽设计型面4760.09−770.02
    下载: 导出CSV
  • [1] 苗禾状. 喉栓式可控固体火箭发动机推力调节研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.

    MIAO Hezhuang. The study on the performance of pintle controlled thrust solid rocket motor[D]. Harbin: Harbin Engineering University, 2009. (in Chinese)
    [2] SAYLES D C. Development of test motors for advanced controllable propellants[J]. Journal of Spacecraft and Rockets,1975,12(3): 174-178. doi: 10.2514/3.56962
    [3] SEVELLEC J F. Development and testing of carbon/carbon valves and tubing for hot gas flow control[R]. AIAA-1987-1820, 1987.
    [4] COON J, YASUHARA W. Solid propulsion approaches for terminal steering[R]. AIAA-1993-2641, 1993.
    [5] OSTRANDER M, BERGMANS J, THOMAS M, et al. Pintle motor challenges for tactical missiles[R]. AIAA-2000-3310, 2000.
    [6] SMITH-KENT R, LOH H T, CHWALOWSKI P. Analytical contouring of pintle nozzle exit cone using computational fluid dynamics[R]. AIAA-1995-2877, 1995.
    [7] MARQUETTE T, ROCK S, HABCHI S, et al. Numerical simulation of controllable propulsion for advanced escape systems[R]. AIAA-1995-2877, 1995.
    [8] LAFOND A. Numerical simulation of the flowfield inside a hot gas valve[R]. AIAA-1999-1087, 1999.
    [9] PROZAN R, LUKE G. CFD prediction of nozzle flow separation without boundary layer resolution[R]. AIAA-1999-2645, 1999.
    [10] HARISRINIVASAN U, BASKARAN R V, SANAL KUMAR V R. Design of a pintle nozzle for the augmented thrust propulsion using multiple internal expansion waves[R]. AIAA-2018-4483, 2018.
    [11] HARISRINIVASAN U, BASKARAN R V, SANAL KUMAR V R. Numerical studies on augmented thrust vectoring system for pintle nozzle using secondary sonic jet[R]. AIAA-2018-4901, 2018.
    [12] 李娟,李江,王毅林,等. 喉栓式变推力发动机性能研究[J]. 固体火箭技术,2007,30(6): 505-509. doi: 10.3969/j.issn.1006-2793.2007.06.012

    LI Juan,LI Jiang,WANG Yilin,et al. Study on performance of pintle controlled thrust solid rocket motor[J]. Journal of Solid Rocket Technology,2007,30(6): 505-509. (in Chinese) doi: 10.3969/j.issn.1006-2793.2007.06.012
    [13] 王毅林,何国强,李江,等. 非同轴式喉栓变推力固体发动机试验[J]. 固体火箭技术,2008,31(1): 43-46. doi: 10.3969/j.issn.1006-2793.2008.01.010

    WANG Yilin,HE Guoqiang,LI Jiang,et al. Experiment on non-coaxial variable thrust pintle solid motor[J]. Journal of Solid Rocket Technology,2008,31(1): 43-46. (in Chinese) doi: 10.3969/j.issn.1006-2793.2008.01.010
    [14] SONG Anchen,WANG Ningfei,LI Junwei,et al. Transient flow characteristics and performance of a solid rocket motor with a pintle valve[J]. Chinese Journal of Aeronautics,2020,33(12): 3189-3205. doi: 10.1016/j.cja.2020.04.023
    [15] 马宝印,李军伟,王兴起,等. 针栓变推力固体火箭发动机动态响应特性研究[J]. 推进技术,2020,41(10): 2161-2172.

    MA Baoyin,LI Junwei,WANG Xingqi,et al. Simulation on dynamic response characteristics of pintle variable thrust solid rocket motor[J]. Journal of Propulsion Technology,2020,41(10): 2161-2172. (in Chinese)
    [16] 邓恒,李志浩,张时空,等. 基于零维内弹道模型的变推力发动机喉栓型面设计与工作特性研究[J]. 推进技术,2022,43(11): 39-48.

    DENG Heng,LI Zhihao,ZHANG Shikong,et al. Pintle profile design method based on zero-dimensional interior ballistic model and performance for variable thrust motor[J]. Journal of Propulsion Technology,2022,43(11): 39-48. (in Chinese)
    [17] 王鹏宇,王政涛,武泽平,等. 多工况下变推力固体发动机喉栓喷管型面一体化优化设计[J]. 固体火箭技术,2022,45(3): 337-342. doi: 10.7673/j.issn.1006-2793.2022.03.003

    WANG Pengyu,WANG Zhengtao,WU Zeping,et al. Optimization design for contour of pintle nozzle for variable thrust solid rocket motor under multiple working conditions[J]. Journal of Solid Rocket Technology,2022,45(3): 337-342. (in Chinese) doi: 10.7673/j.issn.1006-2793.2022.03.003
    [18] 文谦,杨家伟,武泽平,等. 固体姿轨控发动机喉栓运动时序实验设计方法[J]. 推进技术,2022,43(9): 354-363.

    WEN Qian,YANG Jiawei,WU Zeping,et al. Time-sequence experiment design for pintle motion scheme of solid divert and attitude control system[J]. Journal of Propulsion Technology,2022,43(9): 354-363. (in Chinese)
    [19] LEE J H,PARK B H,YOON W. Parametric investigation of the pintle-perturbed conical nozzle flows[J]. Aerospace Science and Technology,2013,26(1): 268-279. doi: 10.1016/j.ast.2012.05.005
    [20] COVER C L, DRENDEL A S. Rocket thruster comprising load-balanced pintle valve: US7849695[P]. 2010-12-14.
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  130
  • HTML浏览量:  101
  • PDF量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 网络出版日期:  2023-10-13

目录

    /

    返回文章
    返回