留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波包变换与CEEMDAN的滚动轴承故障诊断方法

栾孝驰 李彦徵 徐石 沙云东

栾孝驰, 李彦徵, 徐石, 等. 基于小波包变换与CEEMDAN的滚动轴承故障诊断方法[J]. 航空动力学报, 2024, 39(5):20220473 doi: 10.13224/j.cnki.jasp.20220473
引用本文: 栾孝驰, 李彦徵, 徐石, 等. 基于小波包变换与CEEMDAN的滚动轴承故障诊断方法[J]. 航空动力学报, 2024, 39(5):20220473 doi: 10.13224/j.cnki.jasp.20220473
LUAN Xiaochi, LI Yanzheng, XU Shi, et al. Rolling bearing fault diagnosis method based on wavelet packet transform and CEEMDAN[J]. Journal of Aerospace Power, 2024, 39(5):20220473 doi: 10.13224/j.cnki.jasp.20220473
Citation: LUAN Xiaochi, LI Yanzheng, XU Shi, et al. Rolling bearing fault diagnosis method based on wavelet packet transform and CEEMDAN[J]. Journal of Aerospace Power, 2024, 39(5):20220473 doi: 10.13224/j.cnki.jasp.20220473

基于小波包变换与CEEMDAN的滚动轴承故障诊断方法

doi: 10.13224/j.cnki.jasp.20220473
基金项目: 辽宁省教育厅系列项目(JYT2020010); 2022年辽宁省大学生创新创业训练计划(S202110143021);中国航发产学研合作项目(HFZL2018CXY017)
详细信息
    作者简介:

    栾孝驰(1987-),男,副教授、硕士生导师,博士,主要从事航空发动机传动系统状态监测与轴承故障诊断技术研究。E-mail:luanxiaochi27@163.com

    通讯作者:

    李彦徵(2001-),男,主要从事滚动轴承故障诊断技术研究。E-mail:litianhaoze@163.com

  • 中图分类号: V263.6

Rolling bearing fault diagnosis method based on wavelet packet transform and CEEMDAN

  • 摘要:

    针对滚动轴承诊断受环境噪声影响,特征频率难以提取的问题,提出了一种基于小波包变换与完全自适应噪声集合经验模态分解(CEEMDAN)的滚动轴承故障诊断方法。通过CEEMDAN将传感器收集到的原始振动信号进行分解并依据峭度值-相关系数(K-C)筛选准则划分高噪信号和低噪信号。利用小波包变换分解高噪信号后选取合适分量重构实现环境噪声的滤除并与低噪信号进行整合产生新的振动信号进行包络解调,提取实际故障特征频率实现滚动轴承的故障诊断。经对比试验,所提出的方法清晰地提取出滚动轴承的转频、故障特征频率及其倍频和调制频率,由仿真信号计算可知降噪后的信号信噪比提高了7.61 dB,有效优化了对噪声滤除的效果。

     

  • 图 1  诊断方法技术路线

    Figure 1.  Technical route of diagnostic methods

    图 2  仿真信号原始时域图

    Figure 2.  Simulation signal original time domain diagram

    图 3  加入白噪声仿真信号时域图

    Figure 3.  Simulation signal time domain diagram added white noise

    图 4  去噪后的重构信号0~0.2 s时域图

    Figure 4.  Reconstructed signal 0−0.2 s time domain diagram after denoising

    图 5  外圈故障仿真信号重构信号0~1000 Hz频率范围的包络谱

    Figure 5.  Envelope spectrum of the reconstructed simulation signal in the 0−1000 Hz frequency range of the outer ring fault

    图 6  西储大学简单路径故障轴承模拟试验台

    Figure 6.  Western Reserve University simple path fault bearing simulation test bench

    图 7  简单路径内圈故障样本原始信号时域图

    Figure 7.  Inner ring fault sample raw signal time domain diagram of simple path

    图 8  重构信号0~800 Hz频段频谱

    Figure 8.  Spectrum of the reconstructed signal in the 0−800 Hz band

    图 9  简单路径内圈故障样本重构信号时域图像

    Figure 9.  Reconstructed signal time domain diagram of inner ring fault sample of simple path

    图 10  简单路径内圈故障样本重构信号包络谱

    Figure 10.  Envelope spectrum of the inner ring fault sample reconstructed signal of simple path

    图 11  简单路径外圈故障样本原始信号时域图

    Figure 11.  Outer ring fault sample raw signal time domain diagram of simple path

    图 12  简单路径外圈故障样本重构信号时域图像

    Figure 12.  Reconstructed signal time domain diagram of outer ring fault sample of simple path

    图 13  简单路径外圈故障样本重构信号包络谱

    Figure 13.  Envelope spectrum of the outer ring fault sample reconstructed signal of simple path

    图 14  中介轴承故障模拟试验台系统

    Figure 14.  Intermediate bearing simulation test bench overall system

    图 15  中介轴承故障模拟试验台主体

    Figure 15.  Intermediate bearing simulation test bench

    图 16  中介轴承故障模拟试验台结构及故障信号传递路径示意图

    Figure 16.  Intermediate bearing simulation test bench interaxial structure and fault signal transmission path

    图 17  故障轴承样本

    Figure 17.  Sample of the faulty bearings

    图 18  振动测点位置

    Figure 18.  Vibration measurement point location

    图 19  数据采集系统

    Figure 19.  Data acquisition system

    图 20  复杂路径外圈样本原始信号与去噪信号对比

    Figure 20.  Outer ring sample raw signal versus denoising signal of complex path

    图 21  复杂路径外圈故障样本重构信号局部包络谱

    Figure 21.  Envelope spectrum of the outer ring fault sample reconstructed local signal of complex path

    图 22  复杂路径内圈样本原始信号与去噪信号对比

    Figure 22.  Inner ring sample raw signal versus denoising signal of complex path

    图 23  复杂路径内圈故障重构信号局部包络谱

    Figure 23.  Envelope spectrum of the inner ring fault sample reconstructed local signal of complex path

    图 24  复杂路径内圈故障小波包变换故障诊断结果

    Figure 24.  Inner ring fault wavelet packet transformation fault diagnosis results of complex path

    表  1  峭度值-相关系数筛选准则信号划分标准

    Table  1.   Steepness values-correlation coefficient screening criteria signal division criteria

    对比结果信号划分
    WC高噪信号
    W < C低噪信号
    下载: 导出CSV

    表  2  6205-2RS JEM SKF深沟球轴承参数

    Table  2.   Parameters of 6205-2RS JEM SKF deep groove ball bearings

    参数数值
    轴承滚道节径/mm39.0390
    滚珠直径/mm7.940
    接触角/(°)0
    滚珠数9
    下载: 导出CSV

    表  3  内、外圈故障试验样本参数

    Table  3.   Inner and outer ring fault parameters of experiments sample

    参数数值
    转速/(r/min)1797
    故障直径/mm0.1778
    故障深度/mm0.2794
    电动机功率/W0
    下载: 导出CSV

    表  4  简单路径内圈原始信号对比参数

    Table  4.   Inner ring raw signal comparison parameters of simple path

    K0TC
    5.39590.21491.2149
    下载: 导出CSV

    表  5  简单路径内圈高噪信号分量参数

    Table  5.   High noise signal component parameters of the inner ring of a simple path

    序号KcrcW
    11.57150.41621.9877
    20.80550.83491.6404
    31.14630.36231.5085
    下载: 导出CSV

    表  6  简单路径外圈原始信号对比参数

    Table  6.   Outer ring raw signal comparison parameters of simple path

    K0TC
    7.64940.22861.2286
    下载: 导出CSV

    表  7  简单路径外圈高噪信号分量参数

    Table  7.   High noise signal component parameters of the outer ring of a simple path

    序号KcrcW
    10.78070.97391.7546
    21.40330.32711.7304
    31.16990.06261.2325
    下载: 导出CSV

    表  8  试验轴承结构参数

    Table  8.   Experimental bearing structural parameters

    参数数值
    Z34
    Ro/mm140
    Ri/mm110
    d/mm8
    $ \alpha $/(°)0
    下载: 导出CSV

    表  9  加速度传感器参数

    Table  9.   Acceleration sensor parameters

    测点序列号灵敏度/(mV/(m/s2) )as/gar/g
    12838910.04±500.000 15
    22839010.05
    3283919.84
    42839210.00
    下载: 导出CSV
  • [1] 彭畅. 旋转机械轴承振动信号分析方法研究[D]. 重庆: 重庆大学, 2014.

    PENG Chang. Vibration signal analysis of bearings in the rotating machinery[D]. Chongqing: Chongqing University, 2014. (in Chinese)
    [2] 杨雅奇,张彩红,林繁云. 滚动轴承故障诊断技术综述[J]. 山东化工,2021,50(21): 83-84, 87.

    YANG Yaqi,ZHANG Caihong,LIN Fanyun. Summary of rolling bearing fault diagnosis technology[J]. Shandong Chemical Industry,2021,50(21): 83-84, 87. (in Chinese)
    [3] 车文超,张国强,李文凯. 经验模式分解在旋转机械非平稳振动信号表征中的应用分析[J]. 机械管理开发,2022,37(1): 63-66.

    CHE Wenchao,ZHANG Guoqiang,LI Wenkai. Application analysis of empirical mode decomposition in the characterization of nonstationary vibration signals of rotating machinery[J]. Mechanical Management and Development,2022,37(1): 63-66. (in Chinese)
    [4] 樊瑞筱. 滚动轴承故障声发射波形流信号特性试验研究[D]. 黑龙江 大庆: 东北石油大学, 2017.

    FAN Ruixiao. Experimental study on characteristics of achoustic emission waveform streaming with different kinds of faults for rolling bearing[D]. Daqing Heilongjiang: Northeast Petroleum University, 2017. (in Chinese)
    [5] 杜岩. 基于时频图像识别的滚动轴承故障诊断方法研究[D]. 北京: 中国矿业大学, 2020.

    DU Yan. Research on fault diagnosis method for rolling bearings based on time-frequency image recognition[D]. Beijing: China University of Mining & Technology, Beijing, 2020. (in Chinese)
    [6] 徐柳. EMD算法发展及应用综述[J]. 长江信息通信,2022,35(1): 61-64.

    XU Liu. Review on the development and application of EMD algorithm[J]. Changjiang Information & Communications,2022,35(1): 61-64. (in Chinese)
    [7] 朱敏. 数字图像处理技术中小波变换的应用研究[J]. 山东农业工程学院学报,2019,36(8): 22-23.

    ZHU Min. Application of wavelet transform in digital image processing technology[J]. The Journal of Shandong Agriculture and Engineering University,2019,36(8): 22-23. (in Chinese)
    [8] 邹娜娜,胡红萍,白艳萍,等. 基于优化的VMD和小波包降噪的联合去噪方法[J]. 数学的实践与认识,2021,51(20): 135-142.

    ZOU Nana,HU Hongping,BAI Yanping,et al. Joint de-noising method based on the optimized VMD and wavelet packet denosing[J]. Mathematics in Practice and Theory,2021,51(20): 135-142. (in Chinese)
    [9] 陶珍珍. 基于EEMD与SVM的滚动轴承故障诊断方法研究[D]. 太原: 太原科技大学, 2020.

    TAO Zhenzhen. Study on fault diagnosis method of rolling bearing based on EEMD and SVM[D]. Taiyuan: Taiyuan University of Science and Technology, 2020. (in Chinese)
    [10] HUANG N E,SHEN Z,LONG S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences,1998,454(1971): 903-995.
    [11] 戴婷,张榆锋,章克信,等. 经验模态分解及其模态混叠消除的研究进展[J]. 电子技术应用,2019,45(3): 7-12. doi: 10.16157/j.issn.0258-7998.182560

    DAI Ting,ZHANG Yufeng,ZHANG Kexin,et al. The research progress of empirical mode decomposition and mode mixing elimination[J]. Application of Electronic Technique,2019,45(3): 7-12. (in Chinese) doi: 10.16157/j.issn.0258-7998.182560
    [12] 李怡,李焕锋,刘自然. 基于CEEMDAN多尺度熵和SSA-SVM的滚动轴承故障诊断研究[J]. 机电工程,2021,38(5): 599-604.

    LI Yi,LI Huanfeng,LIU Ziran. Fault diagnosis of rolling bearing based on CEEMDAN multi-scale entropy and SSA-SVM[J]. Journal of Mechanical & Electrical Engineering,2021,38(5): 599-604. (in Chinese)
    [13] WU Zhaohua, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009,1(1): 1-41.
    [14] 刘秋风,阎菊婵,乔珍珠,等. 球轴承故障特征频率的诊断[J]. 轴承,1993(6): 21-25, 46.

    LIU Qiufeng,YAN Juchan,QIAO Zhenzhu,et al. Diagnosis technique on the fault characteristic frequencies of deep groove ball bearing[J]. Bearing,1993(6): 21-25, 46. (in Chinese)
    [15] 任子晖,成江洋,邢强,等. 基于CEEMDAN与Teager能量算子的谐波检测方法[J]. 电力系统保护与控制,2017,45(9): 56-62.

    REN Zihui,CHENG Jiangyang,XING Qiang,et al. A harmonic detection method based on CEEMDAN and teager energy operator algorithm[J]. Power System Protection and Control,2017,45(9): 56-62. (in Chinese)
    [16] 任学平, 庞震, 辛向志, 等. 小波包和峭度在轴承早期故障分析中的应用[J]. 轴承, 2014(3): 45-48.

    REN Xueping, PANG Zhen, XIN Xiangzhi, et al. Analysis on early fault of bearings by wavelet packet and kurtosis[J]. Bearing, 2014(3): 45-48. (in Chinese)
    [17] 纪德洋,金锋,冬雷,等. 基于皮尔逊相关系数的光伏电站数据修复[J]. 中国电机工程学报,2022,42(4): 1514-1523.

    JI Deyang,JIN Feng,DONG Lei,et al. Data repairing of photovoltaic power plant based on Pearson correlation coefficient[J]. Proceedings of the CSEE,2022,42(4): 1514-1523. (in Chinese)
    [18] 吕作鹏,罗健,杨晓彤,等. 基于小波包和EMD的HHT时频分析方法在航空试验器轴承故障诊断中的应用[J]. 测控技术,2022,41(10): 17-25. doi: 10.19708/j.ckjs.2021.11.284

    LYU Zuopeng,LUO Jian,YANG Xiaotong,et al. Application of HHT time-frequency analysis technology in aeronautical test-rig bearing fault diagnosis based on wavelet packet and EMD[J]. Measurement & Control Technology,2022,41(10): 17-25. (in Chinese) doi: 10.19708/j.ckjs.2021.11.284
    [19] 栾孝驰,沙云东,柳贡民,等. 基于WPD-KVI-Hilbert变换相结合的滚动轴承早期故障特征精准识别[J]. 推进技术,2022,43(2): 362-373.

    LUAN Xiaochi,SHA Yundong,LIU Gongmin,et al. Accurate identification of early fault characteristics of rolling bearings based on WPD-KVI-Hilbert transform[J]. Journal of Propulsion Technology,2022,43(2): 362-373. (in Chinese)
    [20] 栾孝驰,那万晓,沙云东,等. 基于特征量阈值判决的轴承故障诊断方法[J]. 推进技术,2022,43(4): 307-317.

    LUAN Xiaochi,NA Wanxiao,SHA Yundong,et al. Bearing fault diagnosis method based on eigenquantity threshold judgment[J]. Journal of Propulsion Technology,2022,43(4): 307-317. (in Chinese)
    [21] 栾孝驰,徐石,沙云东,等. 基于GWO-NLM与CEEMDAN的滚动轴承故障诊断方法[J]. 航空动力学报,2023,38(5): 1185-1197. doi: 10.13224/j.cnki.jasp.20210547

    LUAN Xiaochi,XU Shi,SHA Yundong,et al. Rolling bearing fault diagnosis method based on GWO-NLM and CEEMDAN[J]. Journal of Aerospace Power,2023,38(5): 1185-1197. (in Chinese) doi: 10.13224/j.cnki.jasp.20210547
  • 加载中
图(24) / 表(9)
计量
  • 文章访问数:  117
  • HTML浏览量:  43
  • PDF量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 网络出版日期:  2023-10-13

目录

    /

    返回文章
    返回