Shock-wave/boundary-layer interactions on wedge with sawtooth leading edge
-
摘要:
为探究三维锯齿构型对入射激波/边界层干扰流场结构的影响,对一种前缘带锯齿的斜楔/底板流场进行数值仿真分析,并总结了不同锯齿深度对流场的影响规律。结果表明:与前缘平直斜楔相比,锯齿斜楔受溢流的影响。入射激波呈现为三波系曲面结构,激波强度减弱,波角减小,流场结构后移;底板上分离区呈现出“凹”型的空间结构,分离区展向表现为中间低、两边高,流向表现为中间短,两边长。随着锯齿深度增大,流场结构更加后移,分离区的三维特性更加明显。在溢流模型中,受侧面溢流影响,对称面处的分离最大,分离区呈现出三维的“半凹”结构;对比基准溢流模型,锯齿溢流降低了入射波系强度,使侧面溢流减少。
Abstract:In order to investigate the influence of three-dimensional sawtooth configuration on the flow field structure of incident shock-wave/boundary-layer interaction, the flow field of wedge with sawtooth leading edge/plate was numerically simulated and analyzed, and the influence laws of different sawtooth depths on the flow field were summarized. The results showed that, compared with the wedge with straight leading edge, the sawtooth wedge was affected by overflow. Meanwhile, the incident shock wave presented a curved three-wave structure, the shock wave intensity was weakened, the wave angle was reduced, and the flow field structure moved backward; the separation zone on plate presented a “concave” spatial structure. The spreading direction of the separation zone was low in the middle but high on both sides, and the flow direction was short in the middle but long on both sides. With the increase of sawtooth depth, the flow field structure moved backward, and the three-dimensional characteristics of the separation zone became more obvious. In the overflow model, due to the side overflow, the separation at the symmetrical plane was the largest, and the separation zone presented a three-dimensional “semi concave” spatial structure. Compared with the original overflow model, the sawtooth overflow reduced the intensity of the incident wave system and the side overflow.
-
表 1 网格量设计
Table 1. Mesh quantity design
网格密度 网格量/104 粗网格 180 中等网格 380 密网格 500 表 2 流场参数
Table 2. Flow field parameters
$ {Ma}_{\infty } $ ${p}_{0} $/Pa ${T}_{\infty } $/K p*/Pa 3.8 3645 122.05 422415.1 表 3 h=36 mm锯齿模型各分离流线上最大马赫数
Table 3. Maximum Mach number on separation streamlines of h=36 mm sawtooth model
参考平面 ${ {Ma}_{\mathrm{max}} }$ ${Z}_1^{'}$ 0.30 ${Z}_2^{'}$ 0.36 ${Z}_{3}^{'}$ 0.45 表 4 各模型分离区在平面上特征尺寸
Table 4. Characteristic size of separation zone on plane of different models
模型 分离高度/mm 分离跨度/mm L1 C1 L1 C1 Orig 3.91 3.91 28.60 28.60 h=5.8 mm 3.83 3.63 28.25 27.16 h=8 mm 3.81 3.53 27.72 26.30 h=16 mm 3.81 3.38 27.46 24.60 h=26 mm 3.80 2.86 27.43 23.16 h=36 mm 3.79 2.62 27.43 21.00 表 5 各模型溢流量
Table 5. Overflow rate of models
模型 质量流速/(kg/s) STOF SOF Orig h=26 mm 0.0105 OF-orig 0.0158 OF-26 mm 0.0105 0.0119 -
[1] BABINSKY H, HARVEY J K. Introduction[M]//BABINSKY H, HARVEY J K. Shock wave-boundary-layer interactions. Cambridge: Cambridge University Press, 2011: 1-4. [2] 黄舶. 高超声速内外流动激波/边界层相互作用的实验与数值研究[D]. 合肥: 中国科学技术大学, 2013.HUANG Bo. Experimental and numerical investigation of shock wave/boundary layer interaction in hypersonic flow[D]. Hefei: University of Science and Technology of China, 2013. (in Chinese) [3] ANDERSON G Y, MCCLINTON C R, WERDNER J P. Scramjet performance[M]. Reston, US: AIAA, 2000: 369-446. [4] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research-What next?[J]. AIAA Journal,2001,39(8): 1517-1531. doi: 10.2514/2.1476 [5] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences,2015,72(1): 80-99. [6] SCHÜLEIN E. Skin friction and heat flux measurements in shock/boundary layer interaction flows[J]. AIAA Journal,2006,44(8): 1732-1741. doi: 10.2514/1.15110 [7] KORKEGI R H. A simple correlation for incipient-turbulent boundary-layer separation due to a skewed shock wave[J]. AIAA Journal,1973,11(11): 1578-1579. doi: 10.2514/3.50637 [8] MURRAY N,HILLIER R,WILLIAMS S. Experimental investigation of axisymmetric hypersonic shock-wave/turbulent-boundary-layer interactions[J]. Journal of Fluid Mechanics,2013,714: 152-189. doi: 10.1017/jfm.2012.464 [9] CLEMENS N T,NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics,2014,46: 469-492. doi: 10.1146/annurev-fluid-010313-141346 [10] 袁化成, 华正旭, 余安远. 高超声速进气道起动的物理过程及影响因素研究[C]//全国激波与激波管学术会议论文集. 洛阳: 中国力学学会激波与激波管委员会, 2016: 523-530. [11] BISEK N J. High-fidelity simulations of the HIFiRE-6 flow path at angle of attack[R]. AIAA 2016-4276, 2016. [12] STEELANT J, VARVILL R, DEFOORT S, et al. Achievements obtained for sustained hypersonic flight within the LAPCAT project[R]. AIAA 2015-3677, 2015. [13] 王翼. 高超声速进气道启动问题研究[D]. 长沙: 国防科学技术大学, 2008.WANG Yi. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha: National University of Defense Technology, 2008. (in Chinese) [14] 石磊,何国强,秦飞,等. 唇口形状对二元进气道性能影响数值模拟[J]. 推进技术,2012,33(5): 683-688. doi: 10.13675/j.cnki.tjjs.2012.05.002SHI Lei,HE Guoqiang,QIN Fei,et al. Numerical investigation of effects of cowl lip shape on 2-D inlet[J]. Journal of Propulsion Technology,2012,33(5): 683-688. (in Chinese) doi: 10.13675/j.cnki.tjjs.2012.05.002 [15] 郭金默,谢旅荣,李晓驰,等. 一种锯齿状唇口超声速轴对称进气道特性[J]. 航空动力学报,2021,36(2): 264-274. doi: 10.13224/j.cnki.jasp.2021.02.005GUO Jinmo,XIE Lyurong,LI Xiaochi,et al. Characteristics of a supersonic axisymmetric inlet with saw tooth lip[J]. Journal of Aerospace Power,2021,36(2): 264-274. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.02.005 [16] 金志光,张堃元. 高超侧压式进气道简单唇口调节方案设计[J]. 推进技术,2008,29(1): 43-48. doi: 10.3321/j.issn:1001-4055.2008.01.010JIN Zhiguang,ZHANG Kunyuan. Concept of a varied geometry scramjet inlet with rotatable cowl[J]. Journal of Propulsion Technology,2008,29(1): 43-48. (in Chinese) doi: 10.3321/j.issn:1001-4055.2008.01.010 [17] XIAO Fengshou,LI Zhufei,ZHANG Zhiyu,et al. Hypersonic shock wave interactions on a V-shaped blunt leading edge[J]. AIAA Journal,2018,56(1): 356-367. doi: 10.2514/1.J055915 [18] 蒙泽威,范晓樯,陶渊,等. 三维内收缩式进气道V形溢流口热流计算与分析[J]. 推进技术,2018,39(8): 1737-1743. doi: 10.13675/j.cnki.tjjs.2018.08.007MENG Zewei,FAN Xiaoqiang,TAO Yuan,et al. Investigation of aerothermal heating on V-shaped leading edge of inward turning inlet[J]. Journal of Propulsion Technology,2018,39(8): 1737-1743. (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.08.007 [19] 张恩来,李祝飞,李一鸣,等. 斜激波入射V形钝前缘溢流口激波干扰研究[J]. 实验流体力学,2018,32(3): 50-57. doi: 10.11729/syltlx20180002ZHANG Enlai,LI Zhufei,LI Yiming,et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge[J]. Journal of Experiments in Fluid Mechanics,2018,32(3): 50-57. (in Chinese) doi: 10.11729/syltlx20180002 [20] LI Yiming, LI Zhufei, YANG Jiming, et al. Visualization of hypersonic inward-turning inlet flows by planar laser scattering method[R]. AIAA 2017-2358, 2017. [21] BABINSKY H, HARVEY J. Shock wave-boundary-layer interactions[M]. Cambridge, UK: Cambridge University Press, 2011.