留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种前缘带锯齿的斜楔激波/边界层干扰

卜炜峻 谢旅荣 林华川 潘纪富 于平贺

卜炜峻, 谢旅荣, 林华川, 等. 一种前缘带锯齿的斜楔激波/边界层干扰[J]. 航空动力学报, 2024, 39(7):20220474 doi: 10.13224/j.cnki.jasp.20220474
引用本文: 卜炜峻, 谢旅荣, 林华川, 等. 一种前缘带锯齿的斜楔激波/边界层干扰[J]. 航空动力学报, 2024, 39(7):20220474 doi: 10.13224/j.cnki.jasp.20220474
BU Weijun, XIE Lyurong, LIN Huachuan, et al. Shock-wave/boundary-layer interactions on wedge with sawtooth leading edge[J]. Journal of Aerospace Power, 2024, 39(7):20220474 doi: 10.13224/j.cnki.jasp.20220474
Citation: BU Weijun, XIE Lyurong, LIN Huachuan, et al. Shock-wave/boundary-layer interactions on wedge with sawtooth leading edge[J]. Journal of Aerospace Power, 2024, 39(7):20220474 doi: 10.13224/j.cnki.jasp.20220474

一种前缘带锯齿的斜楔激波/边界层干扰

doi: 10.13224/j.cnki.jasp.20220474
详细信息
    作者简介:

    卜炜峻(1998-),男,硕士生,主要从事内流空气动力学研究

  • 中图分类号: V211.3

Shock-wave/boundary-layer interactions on wedge with sawtooth leading edge

  • 摘要:

    为探究三维锯齿构型对入射激波/边界层干扰流场结构的影响,对一种前缘带锯齿的斜楔/底板流场进行数值仿真分析,并总结了不同锯齿深度对流场的影响规律。结果表明:与前缘平直斜楔相比,锯齿斜楔受溢流的影响。入射激波呈现为三波系曲面结构,激波强度减弱,波角减小,流场结构后移;底板上分离区呈现出“凹”型的空间结构,分离区展向表现为中间低、两边高,流向表现为中间短,两边长。随着锯齿深度增大,流场结构更加后移,分离区的三维特性更加明显。在溢流模型中,受侧面溢流影响,对称面处的分离最大,分离区呈现出三维的“半凹”结构;对比基准溢流模型,锯齿溢流降低了入射波系强度,使侧面溢流减少。

     

  • 图 1  斜楔/底板(单位:mm)

    Figure 1.  Wedge/plate (unit:mm)

    图 2  无限宽度模型(单位:mm)

    Figure 2.  Infinite width model (unit:mm)

    图 3  溢流模型(单位:mm)

    Figure 3.  Overflow model (unit:mm)

    图 4  h=16,26,36 mm锯齿草图(单位:mm)

    Figure 4.  Sketch of sawtooth with h=16,26,36 mm (unit:mm)

    图 5  实验几何模型示意图[6]

    Figure 5.  Experimental model[6]

    图 6  流场结构分布

    Figure 6.  Flow field structure

    图 7  实验与仿真壁面压力分布对比

    Figure 7.  Comparison of wall pressure distribution between experiment and simulation

    图 8  不同网格密度下底板静压比分布曲线

    Figure 8.  Static pressure ratio on plate with different mesh

    图 9  边界条件设置

    Figure 9.  Boundary condition settings

    图 10  基准模型马赫数等值线分布

    Figure 10.  Mach number isoline of original model

    图 11  基准模型底板静压比分布曲线

    Figure 11.  Static pressure ratio on plate of original model

    图 12  基准模型马赫数等值面分布

    Figure 12.  Mach number isosurface of original model

    图 13  锯齿模型马赫数等值面分布

    Figure 13.  Mach number isosurface of sawtooth model

    图 14  锯齿模型分离区空间分布

    Figure 14.  Spatial distribution of separation zone of sawtooth model

    图 15  锯齿模型流场结构

    Figure 15.  Flow field structure of sawtooth model

    图 16  锯齿模型分离区结构

    Figure 16.  Separation zone structure of sawtooth model

    图 17  基准模型与h=36 mm锯齿模型Z1Z2Z3线上静压比分布曲线

    Figure 17.  Static pressure ratio distribution of original and h=36 mm sawtooth model on Z1, Z2, Z3

    图 18  对称面L1L2与面C1C2X2X3分布

    Figure 18.  Distribution of symmetry planes L1, L2 and plane C1, C2, X2, X3

    图 19  基准模型、h=16,26,36 mm模型在对称面L1C1截面上马赫数云图

    Figure 19.  Mach number contours on symmetry plane L1 and C1 plans of original, h=16,26,36 mm models

    图 20  基准模型、h=16,26,36 mm在X2X3截面上压力云图与流线分布

    Figure 20.  Pressure contour and streamlines on X2, X3 planes of original, h=16,26,36 mm model

    图 21  基准模型、h=16,26,36 mm模型底板静压云图与极限流线分布

    Figure 21.  Pressure contour and limiting streamlines on plates of original, h=16,26,36 mm model

    图 22  基准模型、h=16,26,36 mm模型Z1线上静压比分布

    Figure 22.  Static pressure ratio distribution of original, h=16,26,36 mm models on Z1

    图 23  锯齿溢流模型流场结构

    Figure 23.  Flow field structure of sawtooth overflow model

    图 24  基准溢流模型与深度为26 mm锯齿溢流模型X5X6X7X8截面马赫数云图

    Figure 24.  Mach number contours on X5, X6, X7 and X8 of original and 26 mm height overflow models

    图 25  溢流模型底板表面极限流线与静压比分布

    Figure 25.  Limiting streamlines and static pressure ratio on plate of overflow model

    图 26  基准溢流模型与26 mm溢流模型底板再附区静压分布与极限流线

    Figure 26.  Limiting streamlines and static pressure on plate of OF-original and OF-26 mm models

    图 27  基准溢流模型与h=26 mm溢流模型Z4Z5Z6线静压比分布

    Figure 27.  Static pressure ratio on Z4, Z5, Z6 reference lines of OF-orig and OF-26 mm height models

    图 28  无限宽度模型Z3线与溢流模型Z6线静压比分布

    Figure 28.  Static pressure ratio distribution on Z3 of infinite width models and Z6 of overflow models

    表  1  网格量设计

    Table  1.   Mesh quantity design

    网格密度网格量/104
    粗网格180
    中等网格380
    密网格500
    下载: 导出CSV

    表  2  流场参数

    Table  2.   Flow field parameters

    $ {Ma}_{\infty } $${p}_{0} $/Pa${T}_{\infty } $/Kp*/Pa
    3.83645122.05422415.1
    下载: 导出CSV

    表  3  h=36 mm锯齿模型各分离流线上最大马赫数

    Table  3.   Maximum Mach number on separation streamlines of h=36 mm sawtooth model

    参考平面${ {Ma}_{\mathrm{max}} }$
    ${Z}_1^{'}$0.30
    ${Z}_2^{'}$0.36
    ${Z}_{3}^{'}$0.45
    下载: 导出CSV

    表  4  各模型分离区在平面上特征尺寸

    Table  4.   Characteristic size of separation zone on plane of different models

    模型分离高度/mm 分离跨度/mm
    L1C1L1C1
    Orig3.913.91 28.6028.60
    h=5.8 mm3.833.6328.2527.16
    h=8 mm3.813.5327.7226.30
    h=16 mm3.813.3827.4624.60
    h=26 mm3.802.8627.4323.16
    h=36 mm3.792.6227.4321.00
    下载: 导出CSV

    表  5  各模型溢流量

    Table  5.   Overflow rate of models

    模型质量流速/(kg/s)
    STOFSOF
    Orig
    h=26 mm0.0105
    OF-orig0.0158
    OF-26 mm0.01050.0119
    下载: 导出CSV
  • [1] BABINSKY H, HARVEY J K. Introduction[M]//BABINSKY H, HARVEY J K. Shock wave-boundary-layer interactions. Cambridge: Cambridge University Press, 2011: 1-4.
    [2] 黄舶. 高超声速内外流动激波/边界层相互作用的实验与数值研究[D]. 合肥: 中国科学技术大学, 2013.

    HUANG Bo. Experimental and numerical investigation of shock wave/boundary layer interaction in hypersonic flow[D]. Hefei: University of Science and Technology of China, 2013. (in Chinese)
    [3] ANDERSON G Y, MCCLINTON C R, WERDNER J P. Scramjet performance[M]. Reston, US: AIAA, 2000: 369-446.
    [4] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research-What next?[J]. AIAA Journal,2001,39(8): 1517-1531. doi: 10.2514/2.1476
    [5] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences,2015,72(1): 80-99.
    [6] SCHÜLEIN E. Skin friction and heat flux measurements in shock/boundary layer interaction flows[J]. AIAA Journal,2006,44(8): 1732-1741. doi: 10.2514/1.15110
    [7] KORKEGI R H. A simple correlation for incipient-turbulent boundary-layer separation due to a skewed shock wave[J]. AIAA Journal,1973,11(11): 1578-1579. doi: 10.2514/3.50637
    [8] MURRAY N,HILLIER R,WILLIAMS S. Experimental investigation of axisymmetric hypersonic shock-wave/turbulent-boundary-layer interactions[J]. Journal of Fluid Mechanics,2013,714: 152-189. doi: 10.1017/jfm.2012.464
    [9] CLEMENS N T,NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics,2014,46: 469-492. doi: 10.1146/annurev-fluid-010313-141346
    [10] 袁化成, 华正旭, 余安远. 高超声速进气道起动的物理过程及影响因素研究[C]//全国激波与激波管学术会议论文集. 洛阳: 中国力学学会激波与激波管委员会, 2016: 523-530.
    [11] BISEK N J. High-fidelity simulations of the HIFiRE-6 flow path at angle of attack[R]. AIAA 2016-4276, 2016.
    [12] STEELANT J, VARVILL R, DEFOORT S, et al. Achievements obtained for sustained hypersonic flight within the LAPCAT project[R]. AIAA 2015-3677, 2015.
    [13] 王翼. 高超声速进气道启动问题研究[D]. 长沙: 国防科学技术大学, 2008.

    WANG Yi. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha: National University of Defense Technology, 2008. (in Chinese)
    [14] 石磊,何国强,秦飞,等. 唇口形状对二元进气道性能影响数值模拟[J]. 推进技术,2012,33(5): 683-688. doi: 10.13675/j.cnki.tjjs.2012.05.002

    SHI Lei,HE Guoqiang,QIN Fei,et al. Numerical investigation of effects of cowl lip shape on 2-D inlet[J]. Journal of Propulsion Technology,2012,33(5): 683-688. (in Chinese) doi: 10.13675/j.cnki.tjjs.2012.05.002
    [15] 郭金默,谢旅荣,李晓驰,等. 一种锯齿状唇口超声速轴对称进气道特性[J]. 航空动力学报,2021,36(2): 264-274. doi: 10.13224/j.cnki.jasp.2021.02.005

    GUO Jinmo,XIE Lyurong,LI Xiaochi,et al. Characteristics of a supersonic axisymmetric inlet with saw tooth lip[J]. Journal of Aerospace Power,2021,36(2): 264-274. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.02.005
    [16] 金志光,张堃元. 高超侧压式进气道简单唇口调节方案设计[J]. 推进技术,2008,29(1): 43-48. doi: 10.3321/j.issn:1001-4055.2008.01.010

    JIN Zhiguang,ZHANG Kunyuan. Concept of a varied geometry scramjet inlet with rotatable cowl[J]. Journal of Propulsion Technology,2008,29(1): 43-48. (in Chinese) doi: 10.3321/j.issn:1001-4055.2008.01.010
    [17] XIAO Fengshou,LI Zhufei,ZHANG Zhiyu,et al. Hypersonic shock wave interactions on a V-shaped blunt leading edge[J]. AIAA Journal,2018,56(1): 356-367. doi: 10.2514/1.J055915
    [18] 蒙泽威,范晓樯,陶渊,等. 三维内收缩式进气道V形溢流口热流计算与分析[J]. 推进技术,2018,39(8): 1737-1743. doi: 10.13675/j.cnki.tjjs.2018.08.007

    MENG Zewei,FAN Xiaoqiang,TAO Yuan,et al. Investigation of aerothermal heating on V-shaped leading edge of inward turning inlet[J]. Journal of Propulsion Technology,2018,39(8): 1737-1743. (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.08.007
    [19] 张恩来,李祝飞,李一鸣,等. 斜激波入射V形钝前缘溢流口激波干扰研究[J]. 实验流体力学,2018,32(3): 50-57. doi: 10.11729/syltlx20180002

    ZHANG Enlai,LI Zhufei,LI Yiming,et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge[J]. Journal of Experiments in Fluid Mechanics,2018,32(3): 50-57. (in Chinese) doi: 10.11729/syltlx20180002
    [20] LI Yiming, LI Zhufei, YANG Jiming, et al. Visualization of hypersonic inward-turning inlet flows by planar laser scattering method[R]. AIAA 2017-2358, 2017.
    [21] BABINSKY H, HARVEY J. Shock wave-boundary-layer interactions[M]. Cambridge, UK: Cambridge University Press, 2011.
  • 加载中
图(28) / 表(5)
计量
  • 文章访问数:  87
  • HTML浏览量:  22
  • PDF量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 网络出版日期:  2023-09-25

目录

    /

    返回文章
    返回