留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉末发动机推进剂供料研究现状及展望

吴佳明 杨玉新 王纵涛 陆海峰 唐杰 刘海峰

吴佳明, 杨玉新, 王纵涛, 等. 粉末发动机推进剂供料研究现状及展望[J]. 航空动力学报, 2024, 39(3):20220477 doi: 10.13224/j.cnki.jasp.20220477
引用本文: 吴佳明, 杨玉新, 王纵涛, 等. 粉末发动机推进剂供料研究现状及展望[J]. 航空动力学报, 2024, 39(3):20220477 doi: 10.13224/j.cnki.jasp.20220477
WU Jiaming, YANG Yuxin, WANG Zongtao, et al. Research progresses and prospect of powdered fuel engine propellant feeding[J]. Journal of Aerospace Power, 2024, 39(3):20220477 doi: 10.13224/j.cnki.jasp.20220477
Citation: WU Jiaming, YANG Yuxin, WANG Zongtao, et al. Research progresses and prospect of powdered fuel engine propellant feeding[J]. Journal of Aerospace Power, 2024, 39(3):20220477 doi: 10.13224/j.cnki.jasp.20220477

粉末发动机推进剂供料研究现状及展望

doi: 10.13224/j.cnki.jasp.20220477
基金项目: 国家自然科学基金(51876066); 西安航天动力技术研究所项目(SY41YYF20202777)
详细信息
    作者简介:

    吴佳明(1998-),男,硕士生,研究领域为粉末发动机供给系统。E-mail:ecustwjm@163.com

    通讯作者:

    杨玉新(1982-),男,研究员,博士,研究领域为固体火箭发动机。E-mail:27767450@qq.com

  • 中图分类号: V438

Research progresses and prospect of powdered fuel engine propellant feeding

  • 摘要:

    简述了气压驱动和电动机驱动两种推进方式的粉末发动机供料系统的发展历史和研究现状,对比分析了壅塞和非壅塞粉末供给的特点以及优缺点,阐明了现有供给系统流量测量方法包括活塞位移法和称重法的原理以及存在的问题。通过对粉末发动机供料系统相关研究的归纳分析,得出以下结论:气压驱动式集成度更高,电动机驱动式活塞控制效果好;壅塞供粉稳定性强,非壅塞供粉气源利用率高;称重法测出料流率精度高,活塞位移法适用范围广。在此基础上对优化供料系统结构、探究壅塞流动机制、建立流量参数关系模型等方面进行了展望。

     

  • 图 1  两种供料系统[18]

    Figure 1.  Two feeding systems[18]

    图 2  气压驱动活塞式粉末供给系统[21]

    Figure 2.  Pneumatic driven piston powdered supply system[21]

    图 3  PDFB粉末供给系统[22]

    Figure 3.  PDFB powdered supply system[22]

    图 4  西北工业大学设计的气压驱动活塞粉末供给系统[24]

    Figure 4.  Pneumatic driven piston powdered supply system designed by Northwestern Polytechnical University[24]

    图 5  电动机驱动活塞式粉末供给系统[25]

    Figure 5.  Motor driven piston powdered supply system[25]

    图 6  粉末供应系统[26]

    Figure 6.  Powder supply system [26]

    图 7  燃料供应系统结构[27]

    Figure 7.  Fuel supply system structure [27]

    图 8  气固两相壅塞拍摄实验系统[11]

    Figure 8.  Gas-solid two-phase choking shooting experimental system[11]

    图 9  壅塞和非壅塞条件下的压力相干性[18]

    Figure 9.  Pressure coherence in choking and unchoking conditions[18]

    图 10  供料系统粉末质量流量测量实验系统[11]

    Figure 10.  Experimental system of powder mass flow rate measurement for feeding system[11]

    图 11  装置原理示意图[14]

    Figure 11.  Schematic diagram of device principle[14]

    图 12  质量传感器受力方式[36]

    Figure 12.  Quality sensor loading mode[36]

    表  1  活塞驱动方式及工作情况

    Table  1.   Piston driving mode and working condition

    年份作者粉末流化气驱动方式工作结果参考文献
    1999Goroshin等Al空气气压驱动稳定供料3~6 min[25]
    2004Miller等Al气压驱动供料1 h[23]
    2006韩超AlN2电动机驱动活塞速度精度达到毫米级[27]
    2008申慧君Mg空气电动机驱动集气腔结构[26]
    2014刘龙Mg/B空气电动机驱动探究Mg/B含量影响[1]
    2018孙海俊Al2O3N2气压驱动建立流量模型[11]
    下载: 导出CSV
  • [1] 刘龙. 镁硼混合粉末燃料冲压发动机点火自维持燃烧特性研究[D]. 长沙: 国防科学技术大学, 2014.

    LIU Long. Investigations on the characteristics of ignition and self-maitenance combustion of powdered fuel ramjet charged with a mixture of magnesium and boron[D]. Changsha: National University of Defense Technology, 2014. (in Chinese)
    [2] 杨威,毛成立,戴祖明. 混合发动机的研究现状及应用前景[J]. 火箭推进,2006,32(3): 35-39.

    YANG Wei,MAO Chengli,DAI Zuming. Investigation on status and prospective application of hybrid motors[J]. Journal of Rocket Propulsion,2006,32(3): 35-39. (in Chinese)
    [3] 石建. 膏体火箭发动机的性能特点及应用前景[J]. 飞航导弹,2008(10): 61-63.

    SHI Jian. Performance characteristics and application prospect of paste rocket engine[J]. Winged Missiles Journal,2008(10): 61-63. (in Chinese)
    [4] 董新刚,霍东兴,张强,等. 粉末发动机技术研究现状及展望[J]. 固体火箭技术,2021,44(2): 166-178.

    DONG Xingang,HUO Dongxing,ZHANG Qiang,et al. Research progresses and prospect of powdered fuel engine technology[J]. Journal of Solid Rocket Technology,2021,44(2): 166-178. (in Chinese)
    [5] 邓哲, 刘佩进. Mg/CO2粉末火箭发动机探索研究[C]// 第八届海峡两岸航空航天学术研讨会论文集. 北京: 北京航空航天大学, 2012: 517-522.
    [6] 张胜敏,杨玉新,胡春波. 粉末火箭发动机推力调节试验研究[J]. 固体火箭技术,2015,38(3): 347-350.

    ZHANG Shengmin,YANG Yuxin,HU Chunbo. Experimental investigation on thrust regulation of powdered rocket motor[J]. Journal of Solid Rocket Technology,2015,38(3): 347-350. (in Chinese)
    [7] LOFTUS H, MONTANINO L, BRYNDLE R. Powder rocket feasibility evaluation[R]. AIAA 1972-1162, 1972.
    [8] 蔡玉鹏. Mg/CO2粉末火箭发动机燃烧室初步设计及燃烧组织研究[D]. 西安: 西北工业大学, 2017.

    CAI Yupeng. Preliminary design and combustion structure of Mg/CO2 powder rocket engine combustor[D]. Xi’an: Northwestern Polytechnical University, 2017. (in Chinese)
    [9] TANG Jie,LU Haifeng,GUO Xiaolei,et al. Discharge characteristics of non-gravity-driven powder in horizontal silos[J]. Powder Technology,2022,400: 117234. doi: 10.1016/j.powtec.2022.117234
    [10] TANG Jie,LU Haifeng,GUO Xiaolei,et al. Static wall pressure distribution characteristics in horizontal silos[J]. Powder Technology,2021,393: 342-348. doi: 10.1016/j.powtec.2021.07.084
    [11] 孙海俊. 粉末推进剂输送特性及对发动机燃烧振荡影响[D]. 西安: 西北工业大学, 2017.

    SUN Haijun. Investigation on the powder propellant conveying characteristics and the influence on combustion oscillation of powder engine[D]. Xi’an: Northwestern Polytechnical University, 2017. (in Chinese)
    [12] KRABICKA J,YAN Yong. Finite-element modeling of electrostatic sensors for the flow measurement of particles in pneumatic pipelines[J]. IEEE Transactions on Instrumentation and Measurement,2009,58(8): 2730-2736. doi: 10.1109/TIM.2009.2016288
    [13] MATSUSAKA S,MASUDA H. Simultaneous measurement of mass flow rate and charge-to-mass ratio of particles in gas-solids pipe flow[J]. Chemical Engineering Science,2006,61(7): 2254-2261. doi: 10.1016/j.ces.2005.05.006
    [14] 张虎,胡春波,孙海俊,等. 稠密气固两相流颗粒质量流量测量方法研究[J]. 固体火箭技术,2015,38(1): 136-140.

    ZHANG Hu,HU Chunbo,SUN Haijun,et al. Measuring method research on solid mass flow rate of dense gas-solid two-phase flow[J]. Journal of Solid Rocket Technology,2015,38(1): 136-140. (in Chinese)
    [15] WANG Chao,YU He,ZHAN N,et al. A vibration probe sensor for mass flow rate measurement of gas-solid two-phase flow[J]. Sensor Review,2016,36: 200-206. doi: 10.1108/SR-07-2015-0107
    [16] GOROSHIN S, HIGGINS A, KAMEL M. Powdered metals as fuel for hypersonic ramjets[R]. AIAA 2001-3919, 2001.
    [17] FRICKE H D, BURR J W, SOBIENIAK M G, et al. Fluidized powders-a new approach to storable missile fuels[R]. San Francisco: 12th JANNAF Liquid Propulsion Meeting, 1970.
    [18] 李悦,胡春波,胡加明,等. 粉末火箭发动机研究进展[J]. 推进技术,2018,39(8): 1681-1695.

    LI Yue,HU Chunbo,HU Jiaming,et al. Progress of powder rocket engine technology[J]. Journal of Propulsion Technology,2018,39(8): 1681-1695. (in Chinese)
    [19] SHORR M,REINHARDT T F. Feasibility of a fluidized powder demand-mode gas generator[J]. Journal of Spacecraft and Rockets,1974,11(1): 29-32. doi: 10.2514/3.62000
    [20] 胡春波,李超,孙海俊,等. 粉末燃料冲压发动机研究进展[J]. 固体火箭技术,2017,40(3): 269-276.

    HU Chunbo,LI Chao,SUN Haijun,et al. A summary of powder-fueled ramjet[J]. Journal of Solid Rocket Technology,2017,40(3): 269-276. (in Chinese)
    [21] MEYER M. Powdered aluminum and oxygen rocket propellants: subscale combustion experiments[R]. Monterey, Canada: JANNAF Combustion Subcommittee Meeting, 1993.
    [22] FOOTE J, LITCHFORD R. Powdered magnesium-carbon dioxide combustion for Mars propulsion[R]. AIAA 2005-4469, 2005.
    [23] MILLER T F, HERR J. Green rocket propulsion by reaction of Al and Mg powders and water[R]. AIAA 2004-4037, 2004.
    [24] LI Chao,HU Chunbo,XIN Xin,et al. Experimental study on the operation characteristics of aluminum powder fueled ramjet[J]. Acta Astronautica,2016,129: 74-81. doi: 10.1016/j.actaastro.2016.08.032
    [25] GOROSHIN S, HIGGINS A, LEE J. Powdered magnesium-carbon dioxide propulsion concepts for Mars missions[R]. AIAA 1999-2408, 1999.
    [26] 申慧君. 粉末燃料冲压发动机关键技术探索与研究[D]. 长沙: 国防科学技术大学, 2008.

    SHEN Huijun. Exploration and research on key technology of powder fuel ramjet[D]. Changsha: National University of Defense Technology, 2008. (in Chinese)
    [27] 韩超. 粉末冲压发动机燃料供应系统研究[D]. 长沙: 国防科学技术大学, 2006.

    HAN Chao. Research on the powder fuel feed system for powdered fuel ramjets[D]. Changsha: National University of Defense Technology, 2006. (in Chinese)
    [28] 王新月. 气体动力学基础[M]. 西安: 西北工业大学出版社, 2006.
    [29] 李强,冯明霞,邹宗树,等. 壅塞现象法测量气粉两相流音速[J]. 东北大学学报(自然科学版),2007,28(10): 1417-1420.

    LI Qiang,FENG Mingxia,ZOU Zongshu,et al. Choking phenomenon used as an approach to measure sonic velocity of Air-powder two-phase flow[J]. Journal of Northeastern University (Natural Science),2007,28(10): 1417-1420. (in Chinese)
    [30] 刘克显,王玉涛,魏颖,等. 高炉煤粉喷吹控制系统述评[J]. 东北大学学报,2001,22(3): 253-256.

    LIU Kexian,WANG Yutao,WEI Ying,et al. Summary of pulverized coal injection control system[J]. Journal of Northeastern University,2001,22(3): 253-256. (in Chinese)
    [31] 王晓鸣,李强,邹宗树,等. 气粉两相流壅塞现象的实验研究[J]. 过程工程学报,2005,5(6): 591-596.

    WANG Xiaoming,LI Qiang,ZOU Zongshu,et al. Experimental study on choking phenomenon of gas-powder flow[J]. The Chinese Journal of Process Engineering,2005,5(6): 591-596. (in Chinese)
    [32] LI Yue,HU Chunbo,DENG Zhe,et al. Experimental study on multiple-pulse performance characteristics of ammonium perchlorate/aluminum powder rocket motor[J]. Acta Astronautica,2017,133: 455-466. doi: 10.1016/j.actaastro.2016.11.014
    [33] YANG Jiangang,HU Chunbo,QIANG Wei,et al. Experimental investigation on the starting and flow regulation characteristics of powder supply system for powder engines[J]. Acta Astronautica,2021,180: 73-84. doi: 10.1016/j.actaastro.2020.12.004
    [34] 钟东文. 气力输送固体质量流量检测技术研究进展[J]. 化工自动化及仪表,2017,44(2): 113-118, 137.

    ZHONG Dongwen. Progress in study of monitoring techniques for mass flow rate measurement in pneumatically conveying bulk solids[J]. Control and Instruments in Chemical Industry,2017,44(2): 113-118, 137. (in Chinese)
    [35] BAKER T M,MILLER T F. Ultraviolet radiation from combustion of a dense magnesium powder flow in air[J]. Journal of Thermophysics and Heat Transfer,2013,27(1): 22-29. doi: 10.2514/1.T3873
    [36] 许一楠. 金属粉末燃料发动机燃料供应系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    XU Yinan. Research of fuel feeding system for metal powder fuel engine[D]. Harbin: Harbin Engineering University, 2018. (in Chinese)
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  139
  • HTML浏览量:  70
  • PDF量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-03
  • 网络出版日期:  2023-10-17

目录

    /

    返回文章
    返回