留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面叶栅风洞流场品质的被动调控策略

蔡明 高丽敏 晋文浩 雷祥福

蔡明, 高丽敏, 晋文浩, 等. 平面叶栅风洞流场品质的被动调控策略[J]. 航空动力学报, 2024, 39(7):20220482 doi: 10.13224/j.cnki.jasp.20220482
引用本文: 蔡明, 高丽敏, 晋文浩, 等. 平面叶栅风洞流场品质的被动调控策略[J]. 航空动力学报, 2024, 39(7):20220482 doi: 10.13224/j.cnki.jasp.20220482
CAI Ming, GAO Limin, JIN Wenhao, et al. Passive control strategy for flow quality of linear cascade wind tunnel[J]. Journal of Aerospace Power, 2024, 39(7):20220482 doi: 10.13224/j.cnki.jasp.20220482
Citation: CAI Ming, GAO Limin, JIN Wenhao, et al. Passive control strategy for flow quality of linear cascade wind tunnel[J]. Journal of Aerospace Power, 2024, 39(7):20220482 doi: 10.13224/j.cnki.jasp.20220482

平面叶栅风洞流场品质的被动调控策略

doi: 10.13224/j.cnki.jasp.20220482
基金项目: 国家科技重大专项(2017-Ⅱ-0001-0013); 引智计划(B17037); 国家自然科学基金重点项目(51790512)
详细信息
    作者简介:

    蔡明(1992-),男,博士生,主要从事航空发动机叶栅风洞试验技术研究

    通讯作者:

    高丽敏(1974-),女,教授,博士,主要从事叶轮机械气动热力学方面的研究。E-mail:gaolm@nwpu.edu.cn

  • 中图分类号: V231.1

Passive control strategy for flow quality of linear cascade wind tunnel

  • 摘要:

    为了提升高负荷叶型的平面叶栅试验流场品质以保证试验数据的可靠性和准确性,建立了平面叶栅流场品质的评价参数,提出了中间流线型上端壁及其与出口可调尾板组合的两种被动调控方案。采用试验验证的数值模拟方法研究了以上两种方案对高负荷平面叶栅流场品质的调控策略。结果表明:两种调控方案均能够有效抑制上端壁区域的流场恶化,进而提升平面叶栅的来流准确性、流场周期性以及二维性。采用与平面叶栅理想中间流线相匹配的上端壁安装角和周向距离,以及尾板安装角时,两种方案对流场品质的提升效果最好。中间流线型上端壁组合出口尾板方案优于中间流线型上端壁方案,使叶栅中间3个叶片通道的进口马赫数偏差不超过±0.005,来流攻角偏差不超过±0.3°;叶栅进口和出口马赫数的周期性偏差不超过0.005,气流角的周期性偏差不超过0.3°;设计攻角下叶栅轴向速度密度比(AVDR)达到1.1,叶栅二维性较好。两种调控方案对叶栅大攻角工况的流场品质调节具有很好的适用性。

     

  • 图 1  平面叶栅风洞

    Figure 1.  Linear cascade wind tunnel

    图 2  调控方案及调控变量

    Figure 2.  Control schemes and factors

    图 3  平面叶栅周期性结果的通道中间流线

    Figure 3.  Middle streamline for periodic result of linear cascade

    图 4  平面叶栅风洞试验段计算模型

    Figure 4.  Calculation model of test section of linear cascade wind tunnel

    图 5  叶栅进口流场的测量方案

    Figure 5.  Measurement arrangement of cascade inflow

    图 6  原始上端壁下叶栅进口流场的试验与数值结果对比(α=6°)

    Figure 6.  Comparison of inflow distributions of cascade under O-UEW between CFD and experiment (α=6°)

    图 7  叶片通道示意图

    Figure 7.  Definition of blade passage

    图 8  不同周向距离下MS-UEW对来流准确性的影响

    Figure 8.  Influence of MS-UEW scheme on inflow accuracy of cascade under different pitchwise distance

    图 9  不同周向距离下MS-UEW对进口均匀性的影响

    Figure 9.  Influence of MS-UEW scheme on inflow uniformity of cascade under different pitchwise distance

    图 10  不同周向距离的MS-UEW方案下试验段中叶展的马赫数云图和流线图

    Figure 10.  Mach number contour and streamlines at 50% span of test section under MS-UEW scheme with different pitchwise distance

    图 11  不同上端壁安装角下MS-UEW对来流准确性的影响

    Figure 11.  Influence of MS-UEW scheme on inflow accuracy of cascade under different upper endwall set angles

    图 12  不同上端壁安装角的MS-UEW方案下试验段中叶展的马赫数云图和流线图

    Figure 12.  Mach number contour and streamlines at 50% span of test section under MS-UEW scheme with different set angles

    图 13  尾板长度对叶栅来流准确性的影响

    Figure 13.  Influence of tailboard length on inflow accuracy of cascade

    图 14  尾板长度对叶栅进口均匀性的影响

    Figure 14.  Influence of tailboard length on inflow uniformity of cascade

    图 15  尾板长度叶栅出口周期性的影响

    Figure 15.  Influence of tailboard length on outflow periodicity of cascade

    图 16  不同调控方案对平面叶栅二维性的影响

    Figure 16.  Effect of different control schemes on the two-dimensionality of linear cascade

    图 17  尾板安装角对叶栅来流准确性的影响

    Figure 17.  Influence of tailboard set angle on inflow accuracy of cascade

    图 18  不同尾板安装角的MS-UEW-T方案下试验段中叶展的静压云图和流线图

    Figure 18.  Static pressure contour and streamlines at 50% span of test section under MS-UEW with different set angles

    图 19  6°攻角下MS-UEW和MS-UEW-T方案调控后试验段中叶展的马赫数云图和流线图

    Figure 19.  Mach number contour and streamlines at 50% span of test section after the control of MS-UEW and MS-UEW-T at incidence angle of 6°

    表  1  MS-UEW方案的调控工况

    Table  1.   Control conditions of MS-UEW

    攻角$\alpha $/(°) 上端壁安装角γ/(°) 周向距离du/mm
    0 15.8 0.5t, 1t
    10.8, 15.8, 20.8 0.5t
    6 17.8 0.5t
    下载: 导出CSV

    表  2  MS-UEW-T方案的调控工况

    Table  2.   Control conditions of MS-UEW-T

    攻角$\alpha $/(°) 尾板长度L/mm 尾板安装角$\lambda $/(°)
    0 1b, 2b 2.3
    2b −1.7,2.3,6.3
    6 2b 3.7
    下载: 导出CSV
  • [1] OATES G C. 航空发动机部件气动热力学[M]. 金东海,高军辉,金捷,等,译. 北京: 航空工业出版社,2016.
    [2] GOSTELOW J P. Cascade aerodynamics[M]. New York: Pergamon Press,1984.
    [3] HERRIG L,EMERY J,ERWIN J. Systematic two-dimensional cascade tests of NACA 65-series compressor blades at low speeds[R]. NACA TN 3916,1957.
    [4] POLLARD D,GOSTELOW J P. Some experiments at low speed on compressor cascades[J]. Journal of Engineering for Power,1967,89(3): 427-436. doi: 10.1115/1.3616709
    [5] LIEBLEIN S,SCHWENK F C,BRODERICK R. Diffusion factor for estimating losses and limiting blade loadings in axial-flow-compressor blade elements[R]. NACA RM E53D01,1953.
    [6] LIEBLEIN S,ROUDEBUSH W H. Theoretical loss relations for low-speed two-dimensional-cascade flow[R]. NACA TN 3662,1956.
    [7] 凌代军,代秋林,朱榕川,等. 叶栅试验技术综述[J]. 实验流体力学,2021,35(3): 30-38. LING Daijun,DAI Qiulin,ZHU Rongchuan,et al. Review of the cascade experimental technology[J]. Journal of Experiments in Fluid Mechanics,2021,35(3): 30-38. (in Chinese

    LING Daijun, DAI Qiulin, ZHU Rongchuan, et al. Review of the cascade experimental technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 30-38. (in Chinese)
    [8] 恽起麟,孙邵鹏,徐明方,等. 高速风洞和低速风洞流场品质规范: GJB 1179-91[S]. 北京:国防科学技术工业委员会,1991: 1-15.
    [9] 姜正礼,凌代军,于宏军,等. 超跨音速平面叶栅试验方法: HB 20145-2014[S]. 北京: 国防科技工业局,2015: 1-14.
    [10] ERWIN J,SAVAGE M,EMERY J. Two-dimensional low-speed cascade investigation of NACA compressor blade sections having a systematic variation in mean-line loading[R]. NACA RM 153I30b,1953.
    [11] ERWIN J,EMERY J. Effect of tunnel configuration and testing technique on cascade performance[R]. NASA Report 1016,1951.
    [12] DUNAVANT J C,EMERY J,WALCH H,et al. High-speed cascade tests of the NACA 65-(12A10)10 and NACA 65-(12A2I8b)10 compressor blade sections[R]. NASA RM-L55I08,1955.
    [13] EMERY J,DUNAVANT J C. Two-dimensional cascade tests of NACA 65-(CloA10)10 blade sections at typical compressor hub conditions for speeds up to choking[R]. NACA RM L57H05,1957.
    [14] PIANKO M. Modern methods of testing rotating components of turbomachines[R]. AGARD-AG-167,1972.
    [15] HERGT A,MEYER R,ENGEL K. Experimental investigation of flow control in compressor cascades[R]. ASME Paper GT 2006-90415,2006.
    [16] KIESNER M,KING R. Multivariable closed-loop active flow control of a compressor stator cascade[J]. AIAA Journal,2017,55(10): 3371-3380. doi: 10.2514/1.J055728
    [17] SONG Bo,GUI Xingmin,LI Shiming,et al. Flow periodicity improvement in a high speed compressor cascade with a large turning-angle[R]. AIAA 2002-3539,2002.
    [18] 杨泳,徐开俊,李珊珊,等. 平面叶栅周期性特性数值研究[J]. 液压与气动,2018(9): 92-97. YANG Yong,XU Kaijun,LI Shanshan,et al. Numerical simulation on flow periodic characteristics of linear cascade[J]. Chinese Hydraulics & Pneumatics,2018(9): 92-97. (in Chinese doi: 10.11832/j.issn.1000-4858.2018.09.016

    YANG Yong, XU Kaijun, LI Shanshan, et al. Numerical simulation on flow periodic characteristics of linear cascade[J]. Chinese Hydraulics & Pneumatics, 2018(9): 92-97. (in Chinese) doi: 10.11832/j.issn.1000-4858.2018.09.016
    [19] 蔡明,高丽敏,刘哲,等. 基于抽吸的亚声速平面叶栅风洞流场品质控制研究[J]. 推进技术,2021,42(9): 1985-1992. CAI Ming,GAO Limin,LIU Zhe,et al. Flow field quality control of subsonic linear cascade wind tunnel based on suction[J]. Journal of Propulsion Technology,2021,42(9): 1985-1992. (in Chinese doi: 10.13675/j.cnki.tjjs.190873

    CAI Ming, GAO Limin, LIU Zhe, et al. Flow field quality control of subsonic linear cascade wind tunnel based on suction[J]. Journal of Propulsion Technology, 2021, 42(9): 1985-1992. (in Chinese) doi: 10.13675/j.cnki.tjjs.190873
    [20] TIAN Simeng,PETRIE-REPAR P,GLODIC N,et al. CFD-aided design of a transonic aeroelastic compressor rig[J]. Journal of Turbomachinery,2019,141(10): 101003. doi: 10.1115/1.4043884
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  108
  • HTML浏览量:  46
  • PDF量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 网络出版日期:  2023-11-02

目录

    /

    返回文章
    返回