留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巡航高度对飞机燃油箱水污染物生成特性的影响

杨文举 邵垒 曾宪君 周宝成 贺佳伟 杨家豪

杨文举, 邵垒, 曾宪君, 等. 巡航高度对飞机燃油箱水污染物生成特性的影响[J]. 航空动力学报, 2023, 39(X):20220487 doi: 10.13224/j.cnki.jasp.20220487
引用本文: 杨文举, 邵垒, 曾宪君, 等. 巡航高度对飞机燃油箱水污染物生成特性的影响[J]. 航空动力学报, 2023, 39(X):20220487 doi: 10.13224/j.cnki.jasp.20220487
YANG Wenju, SHAO Lei, ZENG Xianjun, et al. Influence of cruise altitude on water contaminant formation in aircraft fuel tank[J]. Journal of Aerospace Power, 2023, 39(X):20220487 doi: 10.13224/j.cnki.jasp.20220487
Citation: YANG Wenju, SHAO Lei, ZENG Xianjun, et al. Influence of cruise altitude on water contaminant formation in aircraft fuel tank[J]. Journal of Aerospace Power, 2023, 39(X):20220487 doi: 10.13224/j.cnki.jasp.20220487

巡航高度对飞机燃油箱水污染物生成特性的影响

doi: 10.13224/j.cnki.jasp.20220487
基金项目: 国家自然科学基金委员会-中国民航局民航联合研究基金(U1933121); 飞行器环境控制与生命保障工业和信息化部重点实验室开放课题(KLAECLS-E-202002); 重庆市教委科学技术研究项目(KJQN201900738); 重庆交通大学研究生科研创新项目(CYS22435)
详细信息
    作者简介:

    杨文举(1997-),男,硕士生,主要从事飞机燃油系统,传热传质等方面的研究。E-mail:622210991002@mails.cqjtu.edu.cn

    通讯作者:

    邵垒(1989-),男,讲师、硕士生导师,博士,主要从事机载惰化系统,燃油系统,传热传质等方面的研究。E-mail:shaolei@cqjtu.edu.cn

  • 中图分类号: V312+.1

Influence of cruise altitude on water contaminant formation in aircraft fuel tank

  • 摘要:

    为研究巡航高度对燃油箱内水污染物生成的系统性影响,基于传热传质方程建立水污染物生成模型,对不同巡航高度下燃油箱内的溶解水、析出水、冷凝水、游离水等水污染物生成特性进行计算。结果表明:飞行过程中产生的析出水主要在爬升阶段,且巡航高度越高产生的析出水越多,11 km巡航高度产生的析出水较7 km时多出5.5%;冷凝水主要产生在巡航阶段,冷凝水总量随着巡航高度的增加而减少,11 km巡航高度产生的冷凝水较7 km时减少了34.4%;飞行过程中产生的游离水总量随着巡航高度的增加而增加,但增加幅度逐渐减缓,9 km巡航高度产生的游离水较7 km增加了1.88%,11 km巡航高度产生的游离水较9 km增加了0.92%。

     

  • 图 1  燃油箱内水污染物分布示意图

    Figure 1.  Distribution diagram of water contamination in fuel tank

    图 2  水污染物生成模型流程图

    Figure 2.  Flow chart of the water contamination generation model

    图 3  计算结果与文献[22]结果对比

    Figure 3.  Comparison of calculation and Ref. [22]

    图 4  不同巡航高度下析出水量随时间的变化曲线

    Figure 4.  Curve of the volume of suspended water versus time under different cruising altitudes

    图 5  巡航高度对燃油温度的影响

    Figure 5.  Effect of cruising altitudes on fuel temperature

    图 6  不同巡航高度下冷凝水量随时间变化曲线

    Figure 6.  Curve of the volume of condensate water versus time under different cruising altitudes

    图 7  气相空间水蒸气分压随时间变化曲线

    Figure 7.  Curve of water vapor pressure versus time in the ullage

    图 8  不同巡航高度下游离水量随时间变化曲线

    Figure 8.  Curve of the volume of free water versus time under different flight altitudes

    图 9  巡航高度对游离水量的影响

    Figure 9.  Effect of cruising altitude on the volume of free water

    表  1  巡航高度参数

    Table  1.   Flight altitude parameters

    巡航高度/
    km
    爬升阶段时间/
    min
    巡航阶段时间/
    min
    下降阶段时间/
    min
    7 0~18.4 18.4~155.6 155.6~174
    9 0~23.6 23.6~150.4 150.4~174
    11 0~29.5 29.5~145.1 145.1~174
    13 0~34.1 34.1~139.8 139.8~174
    15 0~39.4 39.4~134.6 134.6~174
    下载: 导出CSV
  • [1] Lawson C P,Lim K M. The state-of-the-art and the future of water management within fuel tanks[C]//Proceedings of 26th International Congress of the Aeronautical Sciences. Anchorage,Alaska,USA,International Council of the Aeronautical Sciences,2008: 2087-2097.
    [2] BAENA S,LAM J K W,LAWSON C. Effects of ice accretion in an aircraft protective mesh strainer of a fuel pump[C]//SAE Technical Paper Series. Warrendale,US: SAE International,2015: 2449-2457.
    [3] ORESHENKOV A V. Accumulation of water in jet fuels. mathematical modeling of the process[J]. Chemistry and Technology of Fuels and Oils,2004,40(5): 320-325. doi: 10.1023/B:CAFO.0000046266.83408.d7
    [4] BAENA S,LAWSON C,LAM J K W. Dimensional analysis to parameterise ice accretion on mesh strainers[C]//SAE Technical Paper Series. Warrendale,US: SAE International,2011: 2795-2806.
    [5] BRANCH A A I. Report on the accident to Boeing 777-236ER,GYMMM at London Heathrow Airport on 17 January 2008: EW/C2008/01/01[R]. UK: Air Accidents Investigation Branch,2010.
    [6] THOMPSON A B,LAM J K W. Water Run-off in aircraft fuel tanks[J]. IMA Journal of Applied Mathematics,2012,77(1): 72-85. doi: 10.1093/imamat/hxr077
    [7] MENG L. Water management within fuel tanks[M]. Cranfield,UK: Cranfield University,2007.
    [8] BAENA-ZAMBRANA S,REPETTO S L,LAWSON C P,et al. Behavior of water in jet fuel: a literature review[J]. Progress in Aerospace Sciences,2013,60: 35-44. doi: 10.1016/j.paerosci.2012.12.001
    [9] BAENA S,LAWSON D C P,-W LAM D J K. Cold fuel test rig to investigate ice accretion on different pump inlet filter-mesh screens[C]// Proceedings of 28th International Congress of the Aeronautical Sciences,Brisbane,Australia: International Council of the Aeronautical Sciences,2012: 3679-3689.
    [10] GREG H,TRACY B,JOHN B,et al. Aviation fuels technical review[M]. San Ramon,US: Chevron Corporation,2006.
    [11] ORIANI R A,SUNDQUIST B E. Emendations to nucleation theory and the homogeneous nucleation of water from the vapor[J]. The Journal of Chemical Physics,1963,38(9): 2082-2089. doi: 10.1063/1.1733936
    [12] UGBEH JOHNSON J,CARPENTER M,WILLIAMS C,et al. Complexities associated with nucleation of water and ice from jet fuel in aircraft fuel systems: a critical review[J]. Fuel,2022,310: 122329. doi: 10.1016/j.fuel.2021.122329
    [13] LIANG Z D. Corrosion of aluminum alloy in aircraft fuel tank compartments due to condensed water[J]. Corrosion,1992,48(6): 514-517. doi: 10.5006/1.3315968
    [14] WETTERWALD M,LAWSON C,LAM J. Feasibility study of OBIGGS for water contamination control in aircraft fuel tanks[C]// Proceedings of 10th AIAA Aviation Technology,Integration,and Operations (ATIO) Conference,Fort Worth,Texas: American Institute of Aeronautics and Astronautics,2010: 9209-9220.
    [15] TERADA Y,LAWSON C P,SHAHNEH A Z. Analytical investigation into the effects of nitrogen enriched air bubbles to improve aircraft fuel system water management[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2019,233(3): 861-870. doi: 10.1177/0954410017742422
    [16] NAYA S,CAO R,FRANCISCO-FERNÁNDEZ M,et al. Estimating water and solid impurities in jet fuel from ISO codes[J]. Energy and Fuels,2013,27(12): 7858-7867. doi: 10.1021/ef401378z
    [17] CHEN Teng,XU Xin,HU Jianqiang,et al. Water behavior of current jet fuel versus operating conditions: storage time,temperature,relative humidity and anti-icing agent[J]. Fuel,2022,309: 122088. doi: 10.1016/j.fuel.2021.122088
    [18] IATA Aviation Fuel Working Group. Guidance material on microbiological contamination in aircraft fuel tanks[M]. Montreal,Canada: International Air Transport Association,2009.
    [19] 张瑞华,刘卫华. 飞机燃油温度仿真及应用[J]. 航空动力学报,2020,35(10): 2089-2096. ZHANG Ruihua,LIU Weihua. Simulation and application of aircraft fuel temperature[J]. Journal of Aerospace Power,2020,35(10): 2089-2096. (in Chinese

    ZHANG Ruihua, LIU Weihua. Simulation and application of aircraft fuel temperature[J]. Journal of Aerospace Power, 2020, 35(10): 2089-2096. (in Chinese)
    [20] KREITH F,MANGLIK R M,BOHN M S. Principles of heat transfer[M]. Stanford,US: Cengage Learning,2012.
    [21] AC-9 Aircraft Environmental Systems Committee,SAE International (Society). SAE Aerospace Applied Thermodynamics Manual Aerothermodynamic Systems Engineering and Design[M]. Warrendale,Pennsylvania,US: SAE International,2019.
    [22] TOMLINSON S,BARKER M,VENN D,et al. Mathematical model of water contamination in aircraft fuel tanks[C]//SAE Technical Paper. Warrendale,US: SAE International,2011: 2540-2551.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  4
  • HTML浏览量:  1
  • PDF量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 网络出版日期:  2023-11-20

目录

    /

    返回文章
    返回