Enhanced heat transfer performance and flow resistance characteristics of the double-wall cooling structures with jet impingement and pin fins
-
摘要:
对于冲击+扰流柱的双层壁冷却结构,为了研究冲击孔的无量纲排间距和无量纲孔间距、扰流柱的无量纲直径以及冲击射流雷诺数对其强化换热性能以及其流阻特性的影响,基于多种几何参数和流动参数对冲击+扰流柱的双层壁冷却结构进行了实验研究,并根据实验工况开展了相应的数值模拟。结果表明:在带有扰流柱的整个冲击靶板内表面上,面平均努塞尔数随着射流雷诺数的增大而单调增大,且基本上呈现为线性增长的趋势。总体而言,在扰流柱表面的面平均努塞尔数略高于冲击靶板内壁面的面平均努塞尔数。随着扰流柱的无量纲直径的增大,在双层壁冷却结构的整个内表面的面平均努塞尔数呈现为先下降后增大的趋势。此外,在整个内表面的面平均努塞尔数随着冲击孔的无量纲排间距的增大而减小;但是,面平均努塞尔数对无量纲孔间距变化的响应不敏感。对于冲击+扰流柱双层壁冷却结构的流量系数,它随着射流雷诺数以及冲击孔的无量纲排间距和无量纲孔间距的增大而增大,但是随着扰流柱的无量纲直径的增大而减小。
Abstract:For the double-wall cooling structure with jet impingement holes and pin fins, in order to study the influences of non-dimansional row spacing and dimensionless hole pitch of the jet impingement holes, the dimensionless diameter of pin fins and the jet impingement Reynolds number on the enhanced heat transfer performance and flow resistance characteristics, experimental studies were conducted based on various geometrical and flow parameters in present study. In addition, the corresponding numerical simulations were also carried out according to the experimental conditions. The results showed that on the whole internal wall surface of the jet impingement target plate with pin fins, the area-averaged Nusselt number monotonically increased with the increase of the jet impingement Reynolds number, and basically presented a linearly increasing tendency. In general, the area-averaged Nusselt number of the wall surface of pin fins was slightly higher than that on the internal wall surface of the jet impingement target plate. With the increase of dimensionless diameter of pin fins, the area-averaged Nusselt number of the entire internal wall surface of the double-wall cooling structure decreased firstly and then increased. In addition, the area-averaged Nusselt number of the entire internal wall surface decreased with the increase of non-dimensionla row spacing. However, the area-averaged Nusselt number of the entire internal wall surface was not sensitive to the variation of non-dimensional hole pitch. The discharge coefficient of the double-wall cooling structure with jet impingement holes and pin fins increased with the increase of the jet impingement Reynolds number, the dimensionless row spacing and non-dimansional hole pitch of jet impingement holes, but decreased with the increase of dimensionless diameter of pin fins.
-
表 1 各个独立变量的相对误差
Table 1. Relative error of each independent variable
参数Xi $ \left(\dfrac{\partial Nu}{\partial {X}_{i}}\cdot \dfrac{{\text{δ}} {X}_{i}}{Nu}\right)\Bigg/$% 热通量(q) ±0.70 冲击孔直径(D) ±2.0 冷气射流温度(tc) ±0.75 靶板壁面温度(tw) ±2.50 表 2 实验件的几何参数
Table 2. Geometrical parameters of the test pieces
冲击孔直径
D/mm冲击距离
H/D冲击孔的排间距
X/D冲击孔的孔间距
Y/D扰流柱的直径
Dp/D冲击孔和扰流柱的排布
方式及排布示意图5 1 3 4 1 4 4 1 5 4 1 3 3 1 3 5 1 3 4 2 -
[1] 王磊,张靖周,杨卫华. 密集型阵列冲击射流换热特性实验[J]. 航空动力学报,2009,24(6): 1264-1269. WANG Lei,ZHANG Jingzhou,YANG Weihua. Experimental research on heat transfer characteristics of denser jet array impingement[J]. Journal of Aerospace Power,2009,24(6): 1264-1269. (in ChineseWANG Lei, ZHANG Jingzhou, YANG Weihua. Experimental research on heat transfer characteristics of denser jet array impingement[J]. Journal of Aerospace Power, 2009, 24(6): 1264-1269. (in Chinese) [2] JANG J H,CHIU H C,YAN W M. Impinging cooling of film hole surface using transient liquid crystal thermograph[J]. International Communications in Heat and Mass Transfer,2013,44: 23-30. doi: 10.1016/j.icheatmasstransfer.2013.03.009 [3] FECHTER S,TERZIS A,OTT P,et al. Experimental and numerical investigation of narrow impingement cooling channels[J]. International Journal of Heat and Mass Transfer,2013,67: 1208-1219. doi: 10.1016/j.ijheatmasstransfer.2013.09.003 [4] LIU Haiyong,LIU Songling,QIANG Hongfu,et al. Aerodynamic investigation of impingement cooling in a confined channel with staggered jet array arrangement[J]. Experimental Thermal and Fluid Science,2013,48: 184-197. doi: 10.1016/j.expthermflusci.2013.02.023 [5] 单文娟,毛军逵,李毅,等. 斜向冲击强化换热特性试验[J]. 航空动力学报,2013,28(3): 701-708. SHAN Wenjuan,MAO Junkui,LI Yi,et al. Experiment on heat transfer characteristics with inclined impingement[J]. Journal of Aerospace Power,2013,28(3): 701-708. (in ChineseSHAN Wenjuan, MAO Junkui, LI Yi, et al. Experiment on heat transfer characteristics with inclined impingement[J]. Journal of Aerospace Power, 2013, 28(3): 701-708. (in Chinese) [6] LEE J,REN Zhong,LIGRANI P,et al. Crossflows from jet array impingement cooling: hole spacing,target plate distance,Reynolds number effects[J]. International Journal of Thermal Sciences,2015,88: 7-18. doi: 10.1016/j.ijthermalsci.2014.09.003 [7] 蒋新伟,许卫疆,朱惠人. 冲击射流在凹坑壁面通道内的换热特性研究[J]. 工程热物理学报,2016,37(12): 2638-2644. JIANG Xinwei,XU Weijiang,ZHU Huiren. Study of heat transfer characteristics in a dimpled wall channel with impingement jets[J]. Journal of Engineering Thermophysics,2016,37(12): 2638-2644. (in ChineseJIANG Xinwei, XU Weijiang, ZHU Huiren. Study of heat transfer characteristics in a dimpled wall channel with impingement jets[J]. Journal of Engineering Thermophysics, 2016, 37(12): 2638-2644. (in Chinese) [8] CHEN Lingling,BRAKMANN R G A,WEIGAND B,et al. Experimental and numerical heat transfer investigation of an impingement jet array with V-ribs on the target plate and on the impingement plate[J]. International Journal of Heat and Fluid Flow,2017,68: 126-138. doi: 10.1016/j.ijheatfluidflow.2017.09.005 [9] 蒋新伟,许卫疆,朱惠人. 带凹坑楔形通道内射流冲击换热特性实验[J]. 航空动力学报,2017,32(12): 2981-2987. JIANG Xinwei,XU Weijiang,ZHU Huiren. Experiment of impingement heat transfer characteristics in dimpled wedge channel[J]. Journal of Aerospace Power,2017,32(12): 2981-2987. (in ChineseJIANG Xinwei, XU Weijiang, ZHU Huiren. Experiment of impingement heat transfer characteristics in dimpled wedge channel[J]. Journal of Aerospace Power, 2017, 32(12): 2981-2987. (in Chinese) [10] KIM S H,AHN K H,PARK J S,et al. Local heat and mass transfer measurements for multi-layered impingement/effusion cooling: effects of pin spacing on the impingement and effusion plate[J]. International Journal of Heat and Mass Transfer,2017,105: 712-722. doi: 10.1016/j.ijheatmasstransfer.2016.10.007 [11] RAO Yu,LIU Yuyang,WAN Chaoyi. Multiple-jet impingement heat transfer in double-wall cooling structures with pin fins and effusion holes[J]. International Journal of Thermal Sciences,2018,133: 106-119. doi: 10.1016/j.ijthermalsci.2018.07.021 [12] 韦宏,祖迎庆. 双层壁冷却结构中多排射流冲击冷却的换热和流阻特性[J]. 航空动力学报,2021,36(8): 1621-1632. WEI Hong,ZU Yingqing. Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure[J]. Journal of Aerospace Power,2021,36(8): 1621-1632. (in Chinese doi: 10.13224/j.cnki.jasp.20200486WEI Hong, ZU Yingqing. Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure[J]. Journal of Aerospace Power, 2021, 36(8): 1621-1632. (in Chinese) doi: 10.13224/j.cnki.jasp.20200486 [13] HAM J C,DUTTA S,EKKAD S. Gas turbine heat transfer and cooling technology [M]. 2nd ed. New York: Taylor & Francis Group,2012: 14-67. [14] MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science,1988,1(1): 3-17. doi: 10.1016/0894-1777(88)90043-X [15] JUNG E Y,PARK C U,LEE D H,et al. Effect of the injection angle on local heat transfer in a showerhead cooling with array impingement jets[J]. International Journal of Thermal Sciences,2018,124: 344-355. doi: 10.1016/j.ijthermalsci.2017.10.033 [16] LEE K D,CHOI D W,KIM K Y. Optimization of ejection angles of double-jet film-cooling holes using RBNN model[J]. International Journal of Thermal Sciences,2013,73: 69-78. doi: 10.1016/j.ijthermalsci.2013.05.015 [17] JIANG Yuting,ZHENG Qun,DONG Ping,et al. Conjugate heat transfer analysis of leading edge and downstream mist–air film cooling on turbine vane[J]. International Journal of Heat and Mass Transfer,2015,90: 613-626. doi: 10.1016/j.ijheatmasstransfer.2015.07.005 [18] KE Zhaoqing,WANG Jianhua. Conjugate heat transfer simulations of pulsed film cooling on an entire turbine vane[J]. Applied Thermal Engineering,2016,109: 600-609. doi: 10.1016/j.applthermaleng.2016.08.132 [19] JIANG Yuting,WAN Xinchao,MAGAGNATO F,et al. Multi-step optimizations of leading edge and downstream film cooling configurations on a high pressure turbine vane[J]. Applied Thermal Engineering,2018,134: 203-213. doi: 10.1016/j.applthermaleng.2018.02.012 [20] JIANG Yuting,LIN Hongfei,YUE Guoqiang,et al. Aero-thermal optimization on multi-rows film cooling of a realistic marine high pressure turbine vane[J]. Applied Thermal Engineering,2017,111: 537-549. doi: 10.1016/j.applthermaleng.2016.09.143 [21] 陈朔. 层板冷却单元的流动换热计算模型研究[D]. 哈尔滨: 哈尔滨工业大学,2015. CHEN Shuo. Research on calculation model of flow and heat transfer of lamilloy cooling unit[D]. Harbin: Harbin Institute of Technology,2015. (in ChineseCHEN Shuo. Research on calculation model of flow and heat transfer of lamilloy cooling unit[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese) -