留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中心分级低污染燃烧室贫油熄火模型

肖为

肖为. 中心分级低污染燃烧室贫油熄火模型[J]. 航空动力学报, 2023, 38(5):1038-1046 doi: 10.13224/j.cnki.jasp.20220491
引用本文: 肖为. 中心分级低污染燃烧室贫油熄火模型[J]. 航空动力学报, 2023, 38(5):1038-1046 doi: 10.13224/j.cnki.jasp.20220491
XIAO Wei. Lean blowout model for concentric staged low emission combustor[J]. Journal of Aerospace Power, 2023, 38(5):1038-1046 doi: 10.13224/j.cnki.jasp.20220491
Citation: XIAO Wei. Lean blowout model for concentric staged low emission combustor[J]. Journal of Aerospace Power, 2023, 38(5):1038-1046 doi: 10.13224/j.cnki.jasp.20220491

中心分级低污染燃烧室贫油熄火模型

doi: 10.13224/j.cnki.jasp.20220491
基金项目: 国家自然科学基金(51906234)
详细信息
    作者简介:

    肖为(1988-),男,高级工程师,博士,主要从事航空发动机气动热力方面的研究。E-mail:xiaowei5478@163.com

  • 中图分类号: V231.2

Lean blowout model for concentric staged low emission combustor

  • 摘要:

    为了准确掌握中心分级燃烧室火焰稳定边界的影响因素,建立中心分级燃烧室贫油熄火边界预测模型,对中心分级燃烧室的熄火过程进行了试验与理论研究。研究获取了燃烧室结构、雾化和工况参数对燃烧室贫油熄火边界的影响规律,建立并验证了中心分级燃烧室熄火半经验预测模型。结果表明:相比反向涡流器,同向涡流器下游具有更大的回流区、更低的回流速度和更长的停留时间,从而减弱了主燃级与值班级之间的湍流交换,导致同向旋流火焰的贫油熄火性能明显优于反向旋流火焰的熄火性能。中心分级燃烧室熄火边界预测模型对单头部和全环燃烧室熄火性能预测的最大误差为20%,满足燃烧室工程设计需要。

     

  • 图 1  TSS燃烧室示意图

    Figure 1.  Schematic diagram of TSS combustor

    图 2  TSS燃烧室单头部试验件

    Figure 2.  Experiment rig of TSS single dome combustor

    图 3  TSS燃烧室流场及OH基浓度仿真结果

    Figure 3.  Simulated velocity field and OH chemiluminescence of TSS combustor

    图 4  火焰熄火与复燃时序图 (TOS2、TOC1)

    Figure 4.  Image of flame extinction and reignition sequence (TOS2, TOC1)

    图 5  TSS燃烧室火焰发光强度随时间变化(TOS2、TOC1)

    Figure 5.  Evolution of flame luminous intensity over time in TSS combustor (TOS2, TOC1)

    图 6  TSS燃烧室中心截面轴向速度分布

    Figure 6.  Axial velocity profile of at central plane of TSS combustor

    图 7  TSS燃烧室不同轴向位置的速度分布

    Figure 7.  Axial velocity distribution of TSS combustor at differentaxial positions

    图 8  同向与反向涡流器对火焰恢复时间的影响

    Figure 8.  Influence of co-swirler and counter-swirler on flame recovery time

    图 9  同向与反向涡流器对贫油熄火边界的影响

    Figure 9.  Influence of co-swirler and counter-swirler on lean blowout limit

    图 10  中心分级燃烧室贫油熄火物理模型

    Figure 10.  Pphysical model of lean blowout process in the concentric staged combustor

    图 11  单头部TSS燃烧室熄火油气比预测值与试验值对比

    Figure 11.  Comparison of predicted and measured values of qLBO from single dome TSS combustor

    图 12  全环TSS燃烧室熄火油气比预测值与试验值对比

    Figure 12.  Comparison of predicted and measured values of qLBO from annular TSS combustor

    表  1  值班级喷嘴试验方案

    Table  1.   Experimental schemes for pilot atomizer

    喷嘴方案副油路喷口
    直径/mm
    副油路流量
    系数Cd
    NA0.40.4
    NB0.60.3
    下载: 导出CSV

    表  2  值班级涡流器试验方案

    Table  2.   Experimental schemes for pilot swirler

    涡流器
    方案
    旋流数旋向
    一级涡流器二级涡流器一级涡流器二级涡流器
    SA1.21.1顺时针顺时针
    SB1.21.1顺时针逆时针
    下载: 导出CSV

    表  3  火焰稳定边界试验方案

    Table  3.   Experimental schemes for flame stability boundary

    编号值班级涡流器值班级喷嘴
    TOS1SANA
    TOS2SANB
    TOS3SBNB
    TOS4SBNB
    下载: 导出CSV

    表  4  火焰稳定边界测试工况

    Table  4.   Test operating conditions of flame stability boundary

    TOC编号Δp/% ${\tau _{{\rm{res}}} }$/ms${U}_{\text{r} }{}_{⃗}$/ (m/s)
    TOC11294.2
    TOC22205.9
    TOC33177.4
    TOC44148.6
    TOC5 5129.7
    下载: 导出CSV
  • [1] STEINBERG A M,DRISCOLL J F. Strench-rate relationship for turbulent premixed combustion LES subgrid models measured using temporally resolved diagnostics[J]. Combustion and Flame,2010,157(7): 1422-1435. doi: 10.1016/j.combustflame.2010.02.024
    [2] CANDEL S M,POINSOT T. Flame strench and the balance equation for the flame area[J]. Combustion Science and Technology,1990,70(1/2/3): 1-15.
    [3] DOAN N A K,SWAMINATHAN N,CHAKRABORTY N. Multi-scale analysis of turbulence-flame interaction in premixed flames[J]. Proceedings of the Combustion Institute,2017,36(2): 1929-1935. doi: 10.1016/j.proci.2016.07.111
    [4] ASPDEN A J. A numerical study of diffusive effects in turbulent lean premixed hydrogen flames[J]. Proceedings of the Combustion Institute,2017,36(2): 1997-2004. doi: 10.1016/j.proci.2016.07.053
    [5] ASPDEN A J,BELL J B,DAY M S. Turbulence-flame interactions in lean premixed dodecane flames[J]. Proceedings of the Combustion Institute,2017,36(2): 2005-2016. doi: 10.1016/j.proci.2016.07.068
    [6] SHANBHOGUE S J,HUSAIN S,LIEUWEN T. Lean blow-off bluff body stabilized flames: scaling and dynamics[J]. Progress in Energy and Combustion Science,2009,35(1): 98-120. doi: 10.1016/j.pecs.2008.07.003
    [7] HODZIC E,JANGI M,SZASZ R Z. Large eddy simulation of bluff body flames close to blow-off using an Eulerian Stochastic field method[J]. Combustion and Flame,2017,181: 1-15. doi: 10.1016/j.combustflame.2017.03.010
    [8] HODZIC E,ALENIUS E,DUWIG C. A large eddy simulation study of bluff body flame dynamics approaching blow-off[J]. Combustion Science and Technology,2017,189(7): 1107-1137. doi: 10.1080/00102202.2016.1275592
    [9] LONGWELL J P,WEISS M A. High temperature reaction rates in hydrocarbon combustion[J]. Industrial and Engineering Chemistry,1955,47(8): 1634-1643. doi: 10.1021/ie50548a049
    [10] LONGWELL J P,FROST E E,WEISS M A. Flame stability in bluff body recirculation zones[J]. Industrial and Engineering Chemistry,1953,45(8): 1629-1633. doi: 10.1021/ie50524a019
    [11] ZUKOWSKI E E. Flame stabilization on bluff bodies at low and intermediate Reynolds numbers[D]. San Luis Obispo, US, California Institute of Technology, 1954.
    [12] BALLAL D R,LEFEBVRE A H. The influence of spark discharge characteristics on minimum ignition energy in flowing gases[J]. Combustion and Flame,1975,24: 99-108.
    [13] BALLAL D R,LEFEBVRE A H. Weak extinction limits of turbulent flowing mixtures[J]. Journal of Engineering for Power,1979,101(3): 343-348. doi: 10.1115/1.3446582
    [14] BALLAL D R,LEFEBVRE A H. Weak extinction limits of turbulent heterogeneous fuel/air mixtures[J]. Journal of Engineering for Power,1980,102(2): 416-421. doi: 10.1115/1.3230272
    [15] RIZK N K,MONGIA H C. Three-dimensional analysis of gas turbine combustors[J]. Journal of Propulsion and Power,2011,7(3): 445-451.
    [16] ATESHKADI A,MCDONELL V G,SAMUELSEN G S. Lean blowout model for a spray-fired swirl-stabilized combustor[J]. Proceedings of the Combustion Institute,2000,28(1): 1281-1288. doi: 10.1016/S0082-0784(00)80341-0
    [17] XIE F,HUANG Y,HU B,et al. Improved semiempirical correlation to predict lean blowout limits for gas turbine combustors[J]. Journal of Propulsion and Power,2012,28(1): 197-203. doi: 10.2514/1.B34296
    [18] HU B,HUANG Y,WANG F. FIA method for LBO limit predictions of aero-engine combustors based on FV model[J]. Aerospace Science and Technology,2013,28(1): 435-446. doi: 10.1016/j.ast.2013.01.002
    [19] HACKER D S. A simplified mixing length model of flame stability in swirling combustion[J]. AIAA Journal,1974,12(1): 65-71. doi: 10.2514/3.49154
    [20] PETERS J E. Predicted TF41 performance with the AGARD research fuel[J]. Journal of Aircraft,2015,21(10): 787-791.
    [21] SCHMIDT D A,MELLOR A M. Characteristic time correlation for combustion inefficiency from alternative fuels[J]. Journal of Energy,1979,3(3): 167-176. doi: 10.2514/3.62428
    [22] DUFFY K T. Characteristic time model development for direct injection diesel engines[D]. Knoxville, US: Vanderbilt University, 1998.
    [23] LEONARD P A,MELLOR A M. Correlation of lean blow off of gas turbine combustors using alternative fuels[J]. Journal of Energy,2015,7(6): 729-732.
    [24] STURGESS G J,SHOUSE D. Lean blowout research in a generic gas turbine combustor with high optical access[J]. Journal of Engineering for Gas Turbines and Power,1997,119(1): 108-118. doi: 10.1115/1.2815533
    [25] SWITHENBANK J,POLL I,VINCENT M W,et al. Combustion design fundamentals[J]. Symposium (International) on Combustion,1973,14(1): 627-638. doi: 10.1016/S0082-0784(73)80059-1
    [26] HOFFMANN S,HABISREUTHER P,LENZE B. Development and assessment of correlations for predicting stability limits of swirling flames[J]. Chemical Engineering and Processing,1994,33(5): 393-400. doi: 10.1016/0255-2701(94)02011-6
    [27] 肖为, 江立军, 罗莲军, 等. 一种油气高效混合的低污染燃烧室: CN113154449A[P]. 2021-07-23.
    [28] STÖHR M,BOXX I,CARTER C,et al. Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor[J]. Proceedings of the Combustion Institute,2011,33(2): 2953-2960. doi: 10.1016/j.proci.2010.06.103
    [29] XIAO Wei,JIANG Lijun,CHEN Sheng. Spark ignition model for combustor[J]. Journal of Aerospace Power,2021,36(1): 25-33.
    [30] LEFEBVRE A H,WANG X F. Mean drop sizes from pressure-swirl nozzles[J]. Journal of Propulsion and Power,1987,3(1): 11-18. doi: 10.2514/3.22946
    [31] STÖHR M,SADANANDAN R,MEIER W. Experimental study of unsteady flame structures of an oscillating swirl flame in a gas turbine model combustor[J]. Proceedings of the Combustion Institute,2009,32(2): 2925-2932. doi: 10.1016/j.proci.2008.05.086
    [32] WINTERFELD G. On processes of turbulent exchange behind flame holders[J]. Symposium (International) on Combustion,1965,10(1): 1265-1275. doi: 10.1016/S0082-0784(65)80261-2
    [33] LEFEBVRE A H. Fuel effects on gas turbine combustion-ignition, stability and combustion efficiency[J]. Journal of Engineering for Gas Turbines and Power,1985,107(1): 24-37. doi: 10.1115/1.3239693
    [34] XIAO W,HUANG Y. Lean blowout limits of a gas turbine combustor operated with aviation fuel and methane[J]. Heat and Mass Transfer,2016,52(5): 1015-1024. doi: 10.1007/s00231-015-1622-3
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  171
  • HTML浏览量:  26
  • PDF量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 网络出版日期:  2023-04-10

目录

    /

    返回文章
    返回