留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

形状记忆合金在航空航天领域的应用研究综述

渠磊 闫泽红 饶智祥 王啸远 冷佳明 万维锋 闫晓军

渠磊, 闫泽红, 饶智祥, 等. 形状记忆合金在航空航天领域的应用研究综述[J]. 航空动力学报, 2022, 37(10):2127-2141 doi: 10.13224/j.cnki.jasp.20220493
引用本文: 渠磊, 闫泽红, 饶智祥, 等. 形状记忆合金在航空航天领域的应用研究综述[J]. 航空动力学报, 2022, 37(10):2127-2141 doi: 10.13224/j.cnki.jasp.20220493
QU Lei, YAN Zehong, RAO Zhixiang, et al. Review on shape memory alloys’ application in field of aerospace[J]. Journal of Aerospace Power, 2022, 37(10):2127-2141 doi: 10.13224/j.cnki.jasp.20220493
Citation: QU Lei, YAN Zehong, RAO Zhixiang, et al. Review on shape memory alloys’ application in field of aerospace[J]. Journal of Aerospace Power, 2022, 37(10):2127-2141 doi: 10.13224/j.cnki.jasp.20220493

形状记忆合金在航空航天领域的应用研究综述

doi: 10.13224/j.cnki.jasp.20220493
详细信息
    作者简介:

    渠磊(1996-),男,博士生,主要从事智能结构研究

    通讯作者:

    闫晓军(1973-),男,教授、博士生导师,博士,主要从事智能结构、微型飞行器动力、高温结构力学研究。E-mail: yanxiaojun@buaa.edu.cn

  • 中图分类号: V252.9

Review on shape memory alloys’ application in field of aerospace

  • 摘要:

    为了在航空航天领域更好地利用形状记忆合金(shape memory alloys, SMA)的形状记忆效应和超弹性两方面的突出力学特性,综述了SMA在材料与工艺、本构模型、形状记忆效应应用和超弹性应用方面的研究进展。主要探讨了NiTiHf、NiTiAu等三元高温合金、SMA热处理工艺和3D打印工艺、形状记忆效应和超弹性本构模型、利用形状记忆效应设计的SMA丝、管、弹簧和带驱动器、利用超弹性设计的减振器、自适应结构等在航空航天领域的应用研究特点,并指出当前存在的不足。该研究结果表明:随着材料、工艺、控制、信息技术的融合发展,SMA的应用研究将向着更宽的工作温度范围、结构多样化以及智能化方向发展。

     

  • 图 1  形状记忆效应和超弹性[6]

    Figure 1.  Shape memory effect and superelasticity[6]

    图 2  热处理定型过程[6]

    Figure 2.  Heat treatment setting process[6]

    图 3  3D打印蜂窝结构的应用[35]

    Figure 3.  Application of 3D printed honeycomb structure[35]

    图 4  SMA-30000压紧释放机构[62]

    Figure 4.  SMA-30000 hold-down and release mechanism[62]

    图 5  REACT V2压紧释放机构[67]

    Figure 5.  REACT V2 hold-down and release mechanism[67]

    图 6  REACT V2实物图[67]

    Figure 6.  REACT V2 image[67]

    图 7  SMA丝在机构变形中的工作原理[74]

    Figure 7.  Working principle of SMA wire in the mechanism deformation[74]

    图 8  Frangibolt机构[78]

    Figure 8.  Frangibolt mechanism[78]

    图 9  SMA岩石劈裂器(SMARS)[24-26]

    Figure 9.  SMA rock splitter (SMARS)[24-26]

    图 10  展向自适应机翼(SAW)[81]

    Figure 10.  Spanwise adaptive wing (SAW) [81]

    图 11  SMA管接头

    Figure 11.  SMA pipe joint

    图 12  LFN机构[84-85]

    Figure 12.  LFN mechanism[84-85]

    图 13  VGC示意图[71]

    Figure 13.  VGC Schematic diagram[71]

    图 14  拟橡胶金属减振器[58]

    Figure 14.  Imitated rubber metal shock absorber[58]

    图 15  NASA火星车轮胎[92]

    Figure 15.  NASA Mars rover tires[92]

    表  1  国内外SMA丝驱动的压紧释放机构

    Table  1.   Domestic and foreign SMA wire actuated hold-down and release mechanism

    型号载荷/
    kN
    释放时间/
    s
    质量/
    g
    包络尺寸
    (直径×高度)/
    (mm×mm)
    TiNi拔销器0.450.1360
    KAIST150.0527535×72
    NEHRA20140070×38
    REACT351035478×78
    REACT V251.1230
    SUNVR0.78
    SMA-30000301443046×84
    SMA-10000100.124041×60
    SMA-36003.60.325042×61
    RLLPD0.358
    下载: 导出CSV

    表  2  SMA弹簧驱动的压紧释放机构

    Table  2.   SMA spring driving hold-down and release mechanism

    型号载荷/
    kN
    释放时间/
    s
    质量/
    g
    包络尺寸/
    (mm×mm)

    LFN12~131025038×89(直径×高度)
    TSN25~800.0530038×76(直径×高度)
    KAU1.5970.02250×30(长度×宽度)
    下载: 导出CSV
  • [1] ÖLANDER A. An electrochemical investigation of solid cadmium-gold alloys[J]. Journal of the American Chemical Society,1932,54(10): 3819-3833. doi: 10.1021/ja01349a004
    [2] CHANG L C,READ T A. Plastic deformation and diffusionless phase changes in metals-the gold-cadmium beta phase[J]. Transactions of AIME Journal of Metals,1951,47(191): 47-52.
    [3] BUEHLER W J,GILFRICH J V,WILEY R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi[J]. Journal of Applied Physics,1963,34(5): 1475-1477. doi: 10.1063/1.1729603
    [4] 刘永康,蒋娜云,李微. 铜基形状记忆合金专利技术分析[J]. 中国科技信息,2018(11): 29-30.

    LIU Yongkang,JIANG Nayun,LI Wei. Analysis of patent technology of copper base shape memory alloy[J]. China Science and Technology Information,2018(11): 29-30. (in Chinese)
    [5] 任彦. 铁基形状记忆合金研究与应用的新进展[J]. 新材料产业,2014(6): 42-45.

    REN Yan. New progress in research and application of iron - based shape memory alloys[J]. Advanced Materials Industry,2014(6): 42-45. (in Chinese)
    [6] 闫晓军, 张小勇. 形状记忆合金智能结构[M]. 北京: 科学出版社, 2015.
    [7] STÉPHANE L. Issues in the design of shape memory alloy actuators[D]. Cambridge, US: Massachusetts Institute of Technology, 2002.
    [8] HOLLERBACH J M, HUNTER I W, BALLANTYNE J. A comparative analysis of actuator technologies for robotics[M]. Cambridge, US: Massachusetts Institute of Technology (MIT) Press, 1992.
    [9] LIU D Z,LIU W X,GONG F Y. Engineering application of Fe-based shape memory alloy on connecting pipe line[J]. Journal De Physique: Ⅳ,1995,5(C8): 1241-1246.
    [10] 谷凡,张玲,王伟,等. 形状记忆合金管道连接件综述[J]. 建筑与预算,2017(12): 30-37.

    GU Fan,ZHANG Ling,WANG Wei,et al. A review of shape memory alloy pipe fittings[J]. Construction and Budget,2017(12): 30-37. (in Chinese)
    [11] HARTL D J,LAGOUDAS D C. Aerospace applications of shape memory alloys[J]. Proceedings of the Institution of Mechanical Engineers,2014,221(4): 535-552.
    [12] HUMBEECK J V. Non-medical applications of shape memory alloys[J]. Materials Science Engineering: A,1999,273/274/275: 134-148.
    [13] MCDONALD S L. Shape memory alloy applications in space systems[J]. Materials Design,1991,12(1): 29-32. doi: 10.1016/0261-3069(91)90089-M
    [14] YAMAUCHI K, OHKATA I, TSUCHIYA K, et al. Shape memory and superelastic alloys: technologies and applications[M]. Sawston Cambridge, England: Woodhead Publishing, 2011.
    [15] FRANK S, SUBHASH G. The effect of alloy formulation on the transformation temperature range of Ni-Ti shape memory alloys[C]// Shape Memory and Superelastic Technologies (SMST-2003). New Hartford, US: Special Metals Corporation, 2004: 13413.1-13413.9
    [16] 李涛,易忠,高鸿. 航天器材料空间环境适应性评价技术[J]. 装备环境工程,2012,9(3): 37-40. doi: 10.3969/j.issn.1672-9242.2012.03.009

    LI Tao,YI Zhong,GAO Hong. Summarization space environmental worthiness evaluation technology for spacecraft material[J]. Equipment Environmental Engineering,2012,9(3): 37-40. (in Chinese) doi: 10.3969/j.issn.1672-9242.2012.03.009
    [17] KARAKOC O,ATLI K C,BENAFAN O,et al. Actuation fatigue performance of NiTiZr and comparison to NiTiHf high temperature shape memory alloys[J]. Materials Science and Engineering:A,2021,829: 142154.1-142154.9.
    [18] KARAKOC O,HAYRETTIN C,CANADINC D,et al. Role of applied stress level on the actuation fatigue behavior of NiTiHf high temperature shape memory alloys[J]. Acta Materialia,2018,153: 156-168. doi: 10.1016/j.actamat.2018.04.021
    [19] MONROE J A,KARAMAN I,LAGOUDAS D C,et al. Determining recoverable and irrecoverable contributions to accumulated strain in a NiTiPd high-temperature shape memory alloy during thermomechanical cycling[J]. Scripta Materialia,2011,65(2): 123-126. doi: 10.1016/j.scriptamat.2011.03.019
    [20] CASALENA L,BIGELOW G S,GAO Y,et al. Mechanical behavior and microstructural analysis of NiTi-40Au shape memory alloys exhibiting work output above 400 ℃[J]. Intermetallics,2017,86: 33-44. doi: 10.1016/j.intermet.2017.03.005
    [21] DREXEL M, SELVADURAY G, PELTON A. The effects of cold work and heat treatment on the properties of nitinol wire[R]. Irvine, US: the 2nd ASME Frontiers in Biomedical Devices Conference, 2007.
    [22] KOK M,DAGDELEN F,AYDOGDU A,et al. The change of transformation temperature on NiTi shape memory alloy by pressure and thermal ageing[J]. Journal of Physics Conference Series,2016,667(1): 012011.1-012011.8.
    [23] BENAFAN O, MOHOLT M. Spanwise adaptive wing: an overview and challenges of in-flight wing folding using shape memory alloys[R]. Konstanz, Germany: the International Conference on Shape Memory and Superelastic Technologies (SMST), 2019.
    [24] BENAFAN O, NOEBE R D. Shape memory alloy rock splitters (SMARS): US9649780B1 [P]. 2017-05-16.
    [25] BENAFAN O, NOEBE R D, HALSMER T J. Shape memory alloy rock splitters (SMARS): a non-explosive method for fracturing planetary rocklike materials and minerals[R]. NASA/TM-2015-218832, 2015.
    [26] BENAFAN O,NOEBE R D,HALSMER T J. Static rock splitters based on high temperature shape memory alloys for planetary explorations[J]. Acta Astronautica,2016,118: 137-157. doi: 10.1016/j.actaastro.2015.10.009
    [27] RAO Zhixiang,WANG Xiaoyuan,LENG Jiaming,et al. Design methodology of the Ni50Ti50 shape memory alloy beam actuator: heat treatment, training and numerical simulation[J]. Materials and Design,2022,217: 110615-110630. doi: 10.1016/j.matdes.2022.110615
    [28] YAN Xiaojun,HUANG Dawei,ZHANG Xiaoyong. Note: a novel curvature-driven shape memory alloy torsional actuator[J]. The Review of Scientific Instruments,2014,85(12): 126109.1-126109.4.
    [29] LIU Xiaopeng, WANG Yinong, QI Min, et al. Effects of heat treatment on shape-setting and non-linearmechanical properties of Nitinol stent[C]// Proceedings of International Conference on Smart Materials and Nanotechnology in Engineering. Harbin, China: SPIE(Society of Photo-optical Instrumentation Engineers), 2007: 64233.1-64233.7.
    [30] MAHMUD A S,HONG Y,TEE S,et al. Effect of annealing on deformation-induced martensite stabilisation of NiTi[J]. Intermetallics,2008,16(2): 209-214. doi: 10.1016/j.intermet.2007.09.003
    [31] BEN F B,GAHBICHE A,ZGHAL S,et al. On the influence of the heat treatment temperature on the superelastic compressive behavior of the Ni-rich NiTi shape memory alloy[J]. Journal of Materials Engineering Performance,2017,26: 5660-5668. doi: 10.1007/s11665-017-2974-2
    [32] 胡励. NiTi形状记忆合金包套压缩塑性变形机理及局部非晶化机制研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    HU Li. Investigation of plastic deformation mechanism and local amorphization mechamism of NiTi shape memory alloy based on canning compression[D]. Harbin: Harbin Engineering University, 2017. (in Chinese)
    [33] DADBAKHSH S,SPEIRS M,KRUTH J,et al. Effect of SLM parameters on transformation temperatures of shape memory Nickel Titanium parts[J]. Advanced Engineering Materials,2014,16(9): 1140-1146. doi: 10.1002/adem.201300558
    [34] NEMATOLLAHI M,TOKER G,SAGHAIAN S E,et al. Additive manufacturing of Ni-rich NiTiHf20: manufacturability, composition, density, and transformation behavior[J]. Shape Memory Superelasticity,2019,5: 113-124. doi: 10.1007/s40830-019-00214-9
    [35] XIONG Zhiwei,LI Meng,HAO Shijie,et al. 3D-printing damage-tolerant architected metallic materials with shape recoverability via special deformation design of constituent material[J]. ACS Applied Materials and Interfaces,2021,15(33): 39915-39924.
    [36] 何贝贝. 选区激光熔化TiNi形状记忆合金热—力耦合数值模拟及实验研究[D]. 南京: 南京航空航天大学, 2016.

    HE Beibei. Numerical simulation and experimental investigation on thermal-mechanical behavior during selective laser melting of Ti Ni shape memory alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [37] ARGHAVANI J. Thermo-mechanical behavior of shape memory alloys under multiaxial loadings: constitutive modeling and numerical implementation at small and finite strains[D]. Teheran, Iran: Sharif University of Technology, 2010.
    [38] 张小勇. 用于疲劳寿命预测的SMA本构模型及其工程应用[D]. 北京: 北京航空航天大学, 2012.

    ZHANG Xiaoyong. Development and applications of a SMA constitutive model for actuators fatigue life prediction[D]. Beijing: Beihang University, 2012. (in Chinese)
    [39] TANAKA K,KOBAYASHI S,SATO Y. Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys[J]. International Journal of Plasticity,1986,2(1): 59-72. doi: 10.1016/0749-6419(86)90016-1
    [40] LIANG C,ROGERS C. One-dimentional theromechanical constitutive relations for shape memory materials[J]. Journal of Intelligent Material Systems and Structures,1990,1(2): 207-234. doi: 10.1177/1045389X9000100205
    [41] BRINSON L. One-dimentional constitutive behavior for shape memory alloys[J]. Materials and Design,2002,23(1): 11-19.
    [42] ZHANG Xiaoyong,YAN Xiaojun,XIE Huimin,et al. Modeling evolutions of plastic strain, maximum transformation strain and transformation temperatures in SMA under superelastic cycling[J]. Computational Materials Science,2014,81: 113-122. doi: 10.1016/j.commatsci.2013.07.022
    [43] LAGOUDAS D C,ZHONGHE B O,QIDWAI M A. Unified thermodynamic constitutive model and finite element analysis of active metal matrix composites[J]. The International Society for Optical Engineering,1995,3(2): 153-179.
    [44] QIDWAI M A,LAGOUDAS D C. Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms[J]. International Journal for Numerical Methods in Engineering,2000,47(6): 1123-1168. doi: 10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N
    [45] HARTL D J,LAGOUDAS D C. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys[J]. Smart Materials Structures,2009,18(10): 104017.1-104017.32.
    [46] MIRZAEIFAR R,DESROCHES R,YAVARI A,et al. On superelastic bending of shape memory alloy beams[J]. International Journal of Solids Structures,2013,50(10): 1664-1680. doi: 10.1016/j.ijsolstr.2013.01.035
    [47] XU L,SOLOMOU A,BAXEVANIS T,et al. Finite strain constitutive modeling for shape memory alloys considering transformation-induced plasticity and two-way shape memory effect[J]. International Journal of Solids and Structures,2020,221: 42-59.
    [48] 于超. NiTi形状记忆合金宏细观热-力耦合循环本构模型研究[D]. 成都: 西南交通大学, 2015.

    YU Chao. Thermo-mechanically coupled macro-and micro-scopic constitutive models of NiTi shape memory alloy[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [49] PATOOR E,EBERHARDT A,BERVEILLER M. Micromechanical modelling of superelasticity in shape memory alloys[J]. Journal de Physique: Ⅳ,1996,6(C1): 277-292.
    [50] THAMBURAJA P,ANAND L. Polycrystalline shape-memory materials: effect of crystallographic texture[J]. Journal of the Mechanics Physics of Solids,2001,49(4): 709-737. doi: 10.1016/S0022-5096(00)00061-2
    [51] THAMBURAJA P,ANAND L. Superelastic behavior in tension–torsion of an initially-textured Ti-Ni shape-memory alloy[J]. International Journal of Plasticity,2002,18(11): 1607-1617. doi: 10.1016/S0749-6419(02)00031-1
    [52] GALL K,SEHITOGLU H. The role of texture in tension–compression asymmetry in polycrystalline NiTi[J]. International Journal of Plasticity,1999,15(1): 69-92. doi: 10.1016/S0749-6419(98)00060-6
    [53] 朱祎国,张杨,赵聃. 多晶NiTi形状记忆合金相变的细观力学本构模型[J]. 金属学报,2013,49(1): 123-128. doi: 10.3724/SP.J.1037.2012.00319

    ZHU Yiguo,ZHANG Yang,ZHAO Dan. Micromechanical constitutive model for phaes transformation of NiTi polycrystal SMA[J]. Acta Metallurgica Sinica,2013,49(1): 123-128. (in Chinese) doi: 10.3724/SP.J.1037.2012.00319
    [54] MIRZAEIFAR R,DESROCHES R,YAVARI A,et al. A micromechanical analysis of the coupled thermomechanical superelastic response of textured and untextured polycrystalline NiTi shape memory alloys[J]. Acta Materialia,2013,61(12): 4542-4558. doi: 10.1016/j.actamat.2013.04.023
    [55] GRAESSER E J,COZZARELLI F A. A proposed three-dimensional constitutive model for shape memory alloys[J]. Journal of Intelligent Material Systems Structures,1994,5(1): 78-89. doi: 10.1177/1045389X9400500109
    [56] WEN Y K. Method for random vibration of hysteretic systems[J]. Journal of the Engineering Mechanics Division,1976,102(2): 249-263. doi: 10.1061/JMCEA3.0002106
    [57] WEN Y K. Equivalent linearization for hysteretic systems under random excitation[J]. Journal of Applied Mechanics,1980,47(1): 150-154. doi: 10.1115/1.3153594
    [58] 闫晓军. 随机载荷下SMA减振器及磁吸振器理论与试验研究[D]. 北京: 北京航空航天大学, 2000.

    YAN Xiaojun. Theoretical and experimental study on SMA damper and magnetic vibration absorber under random excitation[D]. Beijing: Beihang University, 2000. (in Chinese)
    [59] 张景业. 超弹性形状记忆合金混杂复合材料振动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    ZHANG Jingye. Study on vibration of superelastic shape memory alloy hybrid composite structure[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [60] 牛健. 新型SMA-SMP阻尼装置对风电塔结构的减震研究[D]. 辽宁 大连: 大连理工大学, 2021.

    NIU Jian. Research on seismic response reduction of wind turbine tower structures using new SMA-SMP damping device[D]. Dalian Liaoning: Dalian University of Technology, 2021. (in Chinese)
    [61] GARDI R. Final improvements and tests on a SMA actuated, lightweight mechanism for microsatellite[R]. Bremen, Germany: the 54th International Astronautical Congress of the International Astronautical Federation and the International Academy of Astronautics, and the International Institute of Space Law, 2003.
    [62] YAN Xiaojun,HUANG Dawei,ZHANG Xiaoyong,et al. A one-stage, high-load capacity separation actuator using anti-friction rollers and redundant shape memory alloy wires[J]. Review of entific Instruments,2015,86: 125005.1-125005.8.
    [63] OKAIE M D, BUSCH J D, JOHNSON A D, et al. Release device for retaining pin: US5771742 [P]. 1998-06-30.
    [64] YOO Y I,JEONG J W,LIM J H,et al. Development of a non-explosive release actuator using shape memory alloy wire[J]. Review of Scientific Instruments,2013,84(1): 015005.1-015005.8.
    [65] VÁZQUEZ J, BUENO J I. Non explosive low shock reusable 20 kN Hold-down release actuator[R]. Liege, Belgium: the 9th European Space Mechanisms and Tribology Symposium, 2001.
    [66] NAVA N,COLLADO M,CABÁS R. REACT: resettable hold down and release actuator for space applications[J]. Journal of Materials Engineering Performance,2014,23(7): 2704-2711. doi: 10.1007/s11665-014-0964-1
    [67] COLLADO M, RIVERA C, INES J. Evolution of a resettable hold-down and release actuator based on SMA technology[R]. Munich, Bavaria, Germany: the 18 European Space Mechanisms and Tribology Symposium, 2019.
    [68] 张小勇,闫晓军,杨巧龙. 形状记忆合金分瓣螺母空间解锁机构的设计与试验研究[J]. 机械工程学报,2010,46(17): 145-150. doi: 10.3901/JME.2010.17.145

    ZHANG Xiaoyong,YAN Xiaojun,YANG Qiaolong. Design and experimental research of a shape memory alloy space release device with segmented nut form[J]. Journal of Mechanical Engineering,2010,46(17): 145-150. (in Chinese) doi: 10.3901/JME.2010.17.145
    [69] HUANG Dawei,YAN Xiaojun,ZHANG Xiaoyong,et al. Note: A SMA wire actuated extremely long-lifetime release actuator using two ball-lock mechanisms[J]. Review of Scientific Instruments,2017,88(5): 056107.1-056107.3.
    [70] RAO Zhixiang,YAN Xiaojun,ZHANG Xiaoyong,et al. Detailed design and life prediction methodology of novel SMA actuated repeatable launch locking protective device (RLLPD) for magnetically suspended flywheel (MSFW)[J]. Smart Materials Structures,2021,30(5): 057001-057017. doi: 10.1088/1361-665X/abed41
    [71] CALKINS F T,MABE J H. Shape memory alloybased morphing aerostructures[J]. Journal of Mechanical Design,2010,132(11): 111012.1-111012.7.
    [72] 谭慧俊,王子运,张悦. 形状记忆合金在飞行器进气道中的应用研究进展[J]. 南京航空航天大学学报,2019,51(4): 438-448.

    TAN Huijun,WANG Ziyun,ZHANG Yue. Review of Applications of shape memory alloy in Inlets[J]. Journal of Nanjing University of Aeronautics and Astronautics,2019,51(4): 438-448. (in Chinese)
    [73] COSTANZA G,TATA M E. Shape memory alloys for aerospace, recent developments, and new applications: A short review[J]. Materials,2020,13(8): 1856.1-1856.16.
    [74] ASHIR M,HINDAHL J,NOCKE A,et al. Development of an adaptive morphing wing based on fiber-reinforced plastics and shape memory alloys[J]. Journal of Industrial Textiles,2020,50(1): 114-129. doi: 10.1177/1528083718823295
    [75] MCKINNIS D N. Fastening apparatus having shape memory alloy actuator: US5160233 A [P]. 1992-11-03.
    [76] KAISER F. Shape memory alloy (SMA)[J]. Fkaiserpbworks,1998,64(1): 44-46.
    [77] BUSCH J D, BOKAIE M. Implementation of heaters on thermally actuated spacecraft mechanisms[R]. Cleveland, US: the 28th Aerospace Mechanisms Symposium, 1994.
    [78] BUSCH J D, PURDY W E, JOHNSON A D. Development of a non-explosive release device for aerospace applications[R]. Greenbelt, US : the 26th Aerospace Mechanisms Symposium, 1992.
    [79] RUGGERI R T, BUSSOM, R. C., AND ARBOGAST, D. J. Development of a 1/4-scale nitinol actuator for reconfigurable structures[C]// Proceedings of Industrial and Commercial Applications of Smart Structures Technologies. San Diego, US: SPIE (Society of Photo-optical Instrumentation Engineers), 2008: 69300L. 1-69300L. 12.
    [80] HERRINGTON J S, HODGE L H, STEIN C A, et al. Development of a twisting wing powered by a shape memory alloy actuator[R]. Kissimmee, US: the 23rd AIAA/AHS Adaptive Structures Conference AIAA Journal, 2015.
    [81] BENAFAN O. Spanwise adaptive wing[EB/OL]. [2022-06-29]. https://ntrs.nasa.gov/api/citations/20170009544/downloads/20170009544.pdf.
    [82] 王垚,李春福,林元华,等. SMA在石油工程中的应用研究进展[J]. 材料导报: 纳米与新材料专辑,2016,30(S2): 98-102,107.

    WANG Yao,LI Chunfu,LIN Yuanhua,et al. Research progress of application of SMA in petroleum engineering[J]. Materials Review,2016,30(S2): 98-102,107. (in Chinese)
    [83] TAK W,LEE M,KIM B. Ultimate load and release time controllable non-explosive separation device using a shape memory alloy actuator[J]. Journal of Mechanical Science Technology,2011,25(5): 1141-1147. doi: 10.1007/s12206-011-0304-4
    [84] CARPENTER B F. Shape memory actuated release devices[C]// Proceedings of Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies. San Diego, US: SPIE ( Society of Photo-optical Instrumentation Engineers), 1996: 420-426.
    [85] PEFFER A, DENOYER K, FOSNESS E, et al. Development and transition of low-shock spacecraft release devices[C]// Proceedings of IEEE Aerospace Conference. Big Sky, US: IEEE, 2000: 277-284.
    [86] CARPENTER B, LYONS J. Validation report for the EO-1 lightweight flexible solar array experiment[R]. Greenbelt , US: EO-1 Technology Infusion Forum, 2001.
    [87] PECORA R,BARBARINO S,CONCILIO A,et al. Design and functional test of a morphing high-lift device for a regional aircraft[J]. Journal of Intelligent Material Systems Structures,2011,22(10): 1005-1023. doi: 10.1177/1045389X11414083
    [88] LEAL P B,SAVI M A,HARTL D J. Aero-structural optimization of shape memory alloy-based wing morphing via a class/shape transformation approach[J]. Journal of Aerospace Engineering,2018,232(15): 2745-2759.
    [89] YOUN S H,JANG Y S,HAN J H,et al. Compressed mesh washer isolators using the pseudoelasticity of SMA for pyroshock attenuation[J]. Journal of Intelligent Material Systems Structures,2010,21(4): 407-421. doi: 10.1177/1045389X09355665
    [90] KWON S C,JEON S H,OH H U. Performance evaluation of spaceborne cryocooler micro-vibration isolation system employing pseudoelastic SMA mesh washer[J]. Cryogenics,2015,67: 19-27. doi: 10.1016/j.cryogenics.2015.01.002
    [91]
    [92] PADULA S, CREAGER C. Shape memory alloy (SMA) tires: a new paradigm in tire performance[R]. Akron, US: the 7th Annual Meeting and Conference on Tire Science and Technology, 2018.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  454
  • HTML浏览量:  634
  • PDF量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-09
  • 网络出版日期:  2022-09-08

目录

    /

    返回文章
    返回