留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动力短舱校准装置的供气 流量控制策略

陈旷 章荣平 晋荣超

陈旷, 章荣平, 晋荣超. 动力短舱校准装置的供气 流量控制策略[J]. 航空动力学报, 2023, 38(1):240-249 doi: 10.13224/j.cnki.jasp.20220497
引用本文: 陈旷, 章荣平, 晋荣超. 动力短舱校准装置的供气 流量控制策略[J]. 航空动力学报, 2023, 38(1):240-249 doi: 10.13224/j.cnki.jasp.20220497
CHEN Kuang, ZHANG Rongping, JIN Rongchao. Flow control strategy for powered nacelle calibration facility[J]. Journal of Aerospace Power, 2023, 38(1):240-249 doi: 10.13224/j.cnki.jasp.20220497
Citation: CHEN Kuang, ZHANG Rongping, JIN Rongchao. Flow control strategy for powered nacelle calibration facility[J]. Journal of Aerospace Power, 2023, 38(1):240-249 doi: 10.13224/j.cnki.jasp.20220497

动力短舱校准装置的供气 流量控制策略

doi: 10.13224/j.cnki.jasp.20220497
基金项目: 国家自然科学基金(12102451); 气动噪声控制重点实验室开放课题基金(ANCL20200304)
详细信息
    作者简介:

    陈旷(1997-),男,硕士生,主要从事高压供气控制系统算法研究

    通讯作者:

    章荣平(1981-),男,教授级高级工程师,硕士,主要低速风洞动力模拟试验研究。E-mail:zhangrongping@cardc.cn

  • 中图分类号: V211

Flow control strategy for powered nacelle calibration facility

  • 摘要:

    为了降低动力短舱校准装置的马赫数波动,提高校准数据的准确性,需要对供气流量控制策略进行研究。对系统整体特性进行了分析,对高压供气控制系统采用广义预测控制算法实现在一定时域内的最优控制,针对气源压力扰动导致的流量稳定性较差的问题,采用带遗忘因子的递推最小二乘法在线辨识扰动模型,通过扰动前馈的控制结构实现对于扰动的有效抑制。针对数字阀切换过程不同步导致的流量冲击现象,设计了一种针对数字阀的异步切换控制器来抑制该扰动。开展了某型号短舱的校准试验,结果表明:供气流量控制精度优于±0.001 kg/s,马赫数控制精度优于0.0005,控制效率提升了40%,证明所提出的控制策略是有效的。

     

  • 图 1  动力短舱校准装置主要结构布局

    Figure 1.  Main structural layout of powered nacelle calibration facility

    图 2  高压供气系统的主要结构布局

    Figure 2.  Main structural layout of high-pressure air supply system

    图 3  动力短舱校准装置的控制结构框图

    Figure 3.  Control structure block diagram of powered nacelle calibration facility

    图 4  不同给定流量下气源压力变化图

    Figure 4.  Pressure variation diagram of air source under different flow rates

    图 5  高压供气系统的抗扰性与稳定性

    Figure 5.  Anti-disturbance and stability of high-pressure air supply system

    图 6  不同控制策略下马赫数的快速性对比图

    Figure 6.  Comparison diagram of Mach number rapidity under different control strategies

    图 7  不同控制策略下的稳定性对比图

    Figure 7.  Comparison diagram of stability under different control strategies

    图 8  重复性试验结果

    Figure 8.  Repeatability test results

  • [1] 胡卜元, 黄勇, 章贵川, 等. 低速TPS试验内式流量控制技术研究[J]. 实验流体力学, 2019, 33(6): 54-58.

    HU Buyuan, HUANG Yong, ZHANG Guichuan, et al. Internal mass flow control technology of low speed TPS tests[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 54-58. (in Chinese)
    [2] WELGE H R, ONGARATO J R. Powered engine simulator procedures and experimence for the DC-10 wing engine at high subsonic speeds[R]. AIAA-70-590, 1970.
    [3] HARRIS A, PALIWAL K. Civil turbofan propulsion system integration studies using powered testing techniques at ARA[R]. AIAA-84-0593, 1984.
    [4] BINDER B, MELZER E, WULF R. The new calibration tank for engine simulators at DFVLR Göttingen[R]. Advisory Group for Aerospace Research and Development, AGARD CP-348, 1984.
    [5] BOUSQUET J M. Survey of engine integration testing in ONERA wind tunnels[R]. AIAA-2005-3705, 2005.
    [6] KOOI J W, BURGSMUELLER W, HEGEN G H. Application of electronically scanned pressure measurement system for engine simulation tests in the German-Dutch wind tunnel[R]. AIAA-92-4003, 1992.
    [7] KOOI J, KIOCK R, SLAUERHOFF J. Tools for the experimental study of the integration of ultra-high bypass engines on transport aircraft[R]. AIAA-94-2562, 1994.
    [8] HARRIS A E, CARTER E C. Wind tunnel test and analysis technique using powered simulators for civil nacelle installation drag assessment[R]. Advisory Group for Aerospace Research and Development, AGARD CP-301, 1981.
    [9] HODGES R M, Jr, GERHOLD C, BAKSTER D, et al. Acoustic testing of very high bypass ratio turbofan using turbine powered scale models[R]. AIAA-94-2552, 1994.
    [10] TOMPKINS D M, LONG K R, FLAMM J D, et al. Experimental validation of modifications to a TDI model 2700 turbine powered simulator to simulate a high-bypass ratio engine[R]. AIAA-2014-3888, 2014.
    [11] 徐铁军,郝卫东,李聪,等. 气动院校准箱工作原理分析及TPS校准目标量的获得方法[J]. 实验流体力学,2004,18(4): 99-104. doi: 10.3969/j.issn.1672-9897.2004.04.021

    XU Tiejun,HAO Weidong,LI Cong,et al. Analysis of operative principles of calibration tank in CARIA and acquired methods of objective parameters in TPS calibration[J]. Journal of Experiments in Fluid Mechanics,2004,18(4): 99-104. (in Chinese) doi: 10.3969/j.issn.1672-9897.2004.04.021
    [12] 郝卫东,曲芳亮. 校准箱的基本结构和应用[J]. 实验流体力学,2002,16(4): 27-32. doi: 10.3969/j.issn.1672-9897.2002.04.006

    HAO Weidong,QU Fangliang. The basic construction and use of the calibration tank[J]. Journal of Experiments in Fluid Mechanics,2002,16(4): 27-32. (in Chinese) doi: 10.3969/j.issn.1672-9897.2002.04.006
    [13] 熊能,林俊. 2.4 m跨声速风洞带TPS测力试验数据精度要求分析[J]. 实验流体力学,2004,18(3): 42-46. doi: 10.3969/j.issn.1672-9897.2004.03.009

    XIONG Neng,LIN Jun. An analysis of data accuracy of force measurement testing with TPS in 2.4 m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2004,18(3): 42-46. (in Chinese) doi: 10.3969/j.issn.1672-9897.2004.03.009
    [14] 章荣平,王勋年,黄勇,等. 低速风洞全模TPS试验空气桥的设计与优化[J]. 实验流体力学,2012,26(6): 48-52. doi: 10.3969/j.issn.1672-9897.2012.06.011

    ZHANG Rongping,WANG Xunnian,HUANG Yong,et al. Design and optimization of the air bridge for low speed full-span TPS test[J]. Journal of Experiments in Fluid Mechanics,2012,26(6): 48-52. (in Chinese) doi: 10.3969/j.issn.1672-9897.2012.06.011
    [15] 章荣平,王勋年,黄勇. 发动机动力模拟风洞试验中的空气桥技术[J]. 航空动力学报,2015,30(4): 910-915.

    ZHANG Rongping,WANG Xunnian,HUANG Yong. Air bridge technology for engine power simulation test in wind tunnel[J]. Journal of Aerospace Power,2015,30(4): 910-915. (in Chinese)
    [16] 胡卜元,巫朝君,吴福章,等. 基于校准箱的低速风洞一体式喷流试验技术[J]. 航空动力学报,2021,36(6): 1137-1144.

    HU Buyuan,WU Chaojun,WU Fuzhang,et al. Inte-grated jet-effects testing technique based on calibration tank in low-speed wind tunnel[J]. Journal of Aerospace Power,2021,36(6): 1137-1144. (in Chinese)
    [17] 胡卜元,黄勇,章荣平,等. 涡扇动力模拟短舱反推力校准试验技术[J]. 航空动力学报,2019,34(9): 2056-2062.

    HU Buyuan,HUANG Yong,ZHANG Rongping,et al. Reverse thrust calibration test technology of turbofan nacelle simulator[J]. Journal of Aerospace Power,2019,34(9): 2056-2062. (in Chinese)
    [18] 黄勇,胡卜元,张卫国,等. 8米×6米风洞TPS反推力试验技术[J]. 空气动力学学报,2016,34(3): 346-353.

    HUANG Yong,HU Buyuan,ZHANG Weiguo,et al. Reverse thrust testing technique in the 8 m×6 m low speed wind tunnel of CARDC[J]. Acta Aerodynamica Sinica,2016,34(3): 346-353. (in Chinese)
    [19] 汤伟,刘李涛,陈洪,等. 矢量喷管推力特性的风洞试验技术[J]. 航空动力学报,2018,33(4): 858-864.

    TANG Wei,LIU Litao,CHEN Hong,et al. Thrust characteristics test technique of vectoring nozzle in wind tunnel[J]. Journal of Aerospace Power,2018,33(4): 858-864. (in Chinese)
    [20] 季军,宋孝宇,邓祥东,等. 高速风洞一体形式的喷流影响试验技术研究[J]. 实验流体力学,2017,31(6): 71-77. doi: 10.11729/syltlx20160176

    JI Jun,SONG Xiaoyu,DENG Xiangdong,et al. Research on metric thrust jet-effects testing methodology in high-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2017,31(6): 71-77. (in Chinese) doi: 10.11729/syltlx20160176
    [21] 陈旦,张永双,李刚,等. 连续式风洞二喉道调节马赫数控制策略[J]. 航空动力学报,2019,34(10): 2167-2176.

    CHEN Dan,ZHANG Yongshuang,LI Gang,et al. Mach number control strategy for continuous wind tunnel with second throat[J]. Journal of Aerospace Power,2019,34(10): 2167-2176. (in Chinese)
    [22] 刘为杰,何帆,凌忠伟. 2.4 m跨声速风洞流场预测自抗扰控制[J]. 航空学报,2019,40(11): 123154.1-123154.9.

    LIU Weiji,HE Fan,LING Zhongwei. Predictive active disturbance rejection control for flow field in 2.4 m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica,2019,40(11): 123154.1-123154.9. (in Chinese)
  • 加载中
图(8)
计量
  • 文章访问数:  123
  • HTML浏览量:  52
  • PDF量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 网络出版日期:  2022-10-26

目录

    /

    返回文章
    返回