留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速发动机LTO污染物排放特性预测分析

杨晓军 何虹霖

杨晓军, 何虹霖. 超声速发动机LTO污染物排放特性预测分析[J]. 航空动力学报, 2024, 39(8):20220503 doi: 10.13224/j.cnki.jasp.20220503
引用本文: 杨晓军, 何虹霖. 超声速发动机LTO污染物排放特性预测分析[J]. 航空动力学报, 2024, 39(8):20220503 doi: 10.13224/j.cnki.jasp.20220503
YANG Xiaojun, HE Honglin. Prediction and analysis of LTO pollutant emission characteristics of supersonic engine[J]. Journal of Aerospace Power, 2024, 39(8):20220503 doi: 10.13224/j.cnki.jasp.20220503
Citation: YANG Xiaojun, HE Honglin. Prediction and analysis of LTO pollutant emission characteristics of supersonic engine[J]. Journal of Aerospace Power, 2024, 39(8):20220503 doi: 10.13224/j.cnki.jasp.20220503

超声速发动机LTO污染物排放特性预测分析

doi: 10.13224/j.cnki.jasp.20220503
基金项目: 中国民航大学中央高校基本科研业务费项目(3122019187)
详细信息
    作者简介:

    杨晓军(1980-),男,教授、硕士生导师,博士,主要从事航空环境保护与节能减排研究。E-mail:xiaojunyoung@hotmail.com

    通讯作者:

    何虹霖(1998-),男,硕士生,主要从事发动机性能分析与污染物排放研究。E-mail:756606559@qq.com

  • 中图分类号: V239

Prediction and analysis of LTO pollutant emission characteristics of supersonic engine

  • 摘要:

    为合理地分析超声速发动机在起降着陆(landing and take-off,LTO)循环中的污染物排放特性,构建了基于CFM56-7B27核心机的超声速发动机模型。通过建立排放计算模型计算了LTO污染物排放指数(emission index,EI),并分析了其排放特性;研究爬升和慢车阶段污染物排放特性对LTO超声速模式标准设定的影响,进而确定更具代表性的LTO超声速模式标准。分析结果表明:不同LTO阶段的推力设置(thrust setting,TS)和模式时间(time in mode,TIM)对污染物排放特性的影响存在差异性;在LTO标准研究方面,60%额定推力、2 min模式时间的爬升点氮氧化物的排放质量/额定推力更接近于超声速爬升轨迹,慢车点TS在不低于10%额定推力时更能满足污染物(一氧化碳、未燃烧碳氢)排放特性所限制的燃烧效率要求,因此以60%额定推力、2 min模式时间作为LTO超声速模式爬升点标准、以TS不低于10%额定推力作为LTO超声速模式慢车点标准更为合理。

     

  • 图 1  LTO循环

    Figure 1.  LTO cycle

    图 2  基于CFM56-7B27核心机的超声速发动机模型

    Figure 2.  Supersonic Engine Model based on CFM56-7B27 core

    图 4  CFM56-7B系列发动机LTO Ie,CO-T3关系模型

    Figure 4.  LTO Ie,CO-T3 relationship model of CFM56-7B series engines

    图 3  CFM56-7B系列发动机LTO Ie,NOx-T3关系模型

    Figure 3.  LTO Ie,NOx-T3 relationship model of CFM56-7B series engines

    图 5  CFM56-7B系列发动机LTO Ie,UHC-T3关系模型

    Figure 5.  LTO Ie,UHC-T3 relationship model of CFM56-7B series engines

    图 6  超声速发动机模型与NASA STCA发动机模型的最大相对误差对比结果

    Figure 6.  Comparison results of maximum relative error between Supersonic Engine Model and NASA STCA engine model

    图 7  三类发动机LTO模式的推力-污染物排放指数关系图

    Figure 7.  Thrust-pollutant emission index relationship diagram for LTO mode of three types of engines

    图 8  基于不同LTO模式下Dp(NOx)/Foo对比图

    Figure 8.  Comparison diagram of the Dp(NOx)/Foo based on different LTO modes

    图 9  基于不同LTO模式下Dp(CO)/Foo对比图及部分放大图

    Figure 9.  Comparison diagram and partially enlarged diagram of the Dp(CO)/Foo based on different LTO modes

    图 10  基于不同LTO模式下Dp(UHC)/Foo对比图及部分放大图

    Figure 10.  Comparison diagram and partially enlarged diagram of the Dp(UHC)/Foo based on different LTO modes

    图 11  降噪爬升轨迹图

    Figure 11.  Diagram of the noise-reduced climbing trajectory

    图 12  降噪爬升轨迹和潜在LTO爬升点的累积Dp(NOx)/Foo

    Figure 12.  Accumulated Dp(NOx)/Foo of the noise-reduced climbing trajectory and potential LTO climbing points

    图 13  燃烧室效率与燃烧室负荷的关系

    Figure 13.  Relationship between combustor efficiency and combustor loading

    表  1  LTO亚声速模式标准定义

    Table  1.   Definition of LTO subsonic mode standard

    阶段 Ts/Foo)/% Mt/min
    起飞 100 0.7
    爬升 85 2.2
    进近 30 4.0
    慢车 7 26.0
    下载: 导出CSV

    表  2  LTO超声速模式标准定义

    Table  2.   Definition of LTO supersonic mode standard

    阶段 Ts/Foo)/% Mt/min
    起飞 100 1.2
    爬升 65 2.0
    下降 15 1.2
    进近 34 2.3
    慢车 5.8 26.0
    下载: 导出CSV

    表  3  超声速发动机模型在LTO亚声速模式的建模数据

    Table  3.   Modeling data of the Supersonic Engine Model in LTO subsonic mode

    阶段 Ts/Foo)/% 推力大小/kN Mt/min 燃烧室入口压力/kPa 燃烧室入口温度/K 燃油流量/(kg/s) 油气比
    起飞 100 73.922 0.7 2203.555 757.07 0.94199 0.01545
    爬升 85 62.834 2.2 1942.036 725.77 0.77599 0.01302
    进近 30 22.177 4 922.058 580.91 0.25945 0.00872
    慢车 7 5.175 26 529.46 493.57 0.09777 0.00717
    下载: 导出CSV

    表  4  超声速发动机模型在LTO超声速模式的建模数据

    Table  4.   Modeling data of the Supersonic Engine Model in LTO supersonic mode

    阶段 Ts/Foo)/% 推力大小/kN Mt/min 燃烧室入口压力/kPa 燃烧室入口温度/K 燃油流量/(kg/s) 油气比
    起飞 100 73.922 1.2 2203.555 757.07 0.94199 0.01545
    爬升 65 48.049 2 1559.392 678.95 0.56778 0.01023
    下降 15 11.088 1.2 673.811 528.1 0.15558 0.00796
    进近 34 25.133 2.3 985.791 592.78 0.29279 0.00896
    慢车 5.8 4.287 26 512.976 488.73 0.09166 0.007
    下载: 导出CSV

    表  5  CFM56-7B系列发动机LTO NOx排放指数

    Table  5.   LTO NOx emission index of CFM56-7B series engines

    发动机型号额定推力/kNIe,NOx/(g/kg)
    起飞爬升进近慢车
    CFM56-7B1886.714.8113.007.783.65
    CFM56-7B2091.615.6113.537.983.77
    CFM56-7B22101.017.4014.678.353.95
    CFM56-7B24107.618.9315.608.604.09
    CFM56-7B26117.021.7917.088.934.27
    CFM56-7B27121.423.9417.899.094.36
    下载: 导出CSV

    表  6  CFM56-7B系列发动机LTO CO排放指数

    Table  6.   LTO CO emission index of CFM56-7B series engines

    发动机型号额定推力/kNIe,CO/(g/kg)
    起飞爬升进近慢车
    CFM56-7B1886.70.170.285.5446.64
    CFM56-7B2091.60.150.235.0343.31
    CFM56-7B22101.00.160.174.1837.90
    CFM56-7B24107.60.180.153.6834.71
    CFM56-7B26117.00.250.163.0730.94
    CFM56-7B27121.40.310.172.8229.39
    下载: 导出CSV

    表  7  CFM56-7B系列发动机LTO UHC排放指数

    Table  7.   LTO UHC emission index of CFM56-7B series engines

    发动机型号额定推力/kNIe,UHC/(g/kg)
    起飞爬升进近慢车
    CFM56-7B1886.70.030.030.084.51
    CFM56-7B2091.60.030.030.083.84
    CFM56-7B22101.00.020.030.072.83
    CFM56-7B24107.60.020.030.062.30
    CFM56-7B26117.00.020.020.051.75
    CFM56-7B27121.40.030.020.051.54
    下载: 导出CSV

    表  8  超声速发动机模型在LTO亚声速模式下的排放指数

    Table  8.   Emission index of the Supersonic Engine Model in LTO subsonic mode

    阶段 $ I_{{\mathrm{e,NOx}}} $/(g/kg) $I_{{\mathrm{e,CO}}} $/(g/kg) $I_{{\mathrm{e,UHC}}} $/(g/kg)
    起飞 16.268 0.866 0.003
    爬升 13.584 1.095 0.004
    进近 7.717 4.838 0.044
    慢车 3.696 44.821 4.078
    下载: 导出CSV

    表  9  超声速发动机模型在LTO超声速模式下的排放指数

    Table  9.   Emission index of the Supersonic Engine Model in LTO supersonic mode

    阶段 $I_{{\mathrm{e,NOx}}} $/(g/kg) $I_{{\mathrm{e,CO}}} $/(g/kg) $I_{{\mathrm{e,UHC}}} $/(g/kg)
    起飞 16.268 0.866 0.003
    爬升 11.171 1.54 0.006
    下降 5.251 13.897 0.307
    进近 8.109 3.972 0.031
    慢车 3.534 58.779 7.485
    下载: 导出CSV

    表  10  降噪爬升轨迹定义

    Table  10.   Definition of the noise-reduced climbing trajectory

    轨迹名称 起飞阶段(Ts/Foo)/% 爬升阶段1 爬升阶段2 爬升阶段3
    高度范围/m Ts/Foo)/% 高度范围/m Ts/Foo)/% 高度范围/m Ts/Foo)/%
    无减推轨迹 100 10.668~914.4 100
    标准轨迹 100 10.668~584.7 100 584.7~914.4 65
    先进轨迹 100 10.668~15.3 100 15.3~544.1 85 544.1~914.4 65
    最小噪声减推轨迹 100 10.668~25 100 25~914.4 60
    下载: 导出CSV

    表  11  降噪爬升轨迹与潜在LTO爬升点之间的Dp/Foo对比

    Table  11.   Dp/Foo comparison between the noise-reduced climbing trajectory and potential LTO climbing points

    潜在的LTO
    爬升点工况
    轨迹与爬升点之间的相对误差值/%
    无减推
    轨迹
    标准
    轨迹
    先进
    轨迹
    最小噪声
    减推轨迹
    85%Foo/2.2 min 62.602 64.650 71.455 70.810
    85%Foo/2 min 58.862 61.115 68.600 67.891
    80%Foo/2.2 min 57.865 60.173 67.839 67.113
    80%Foo/2 min 53.652 56.19 64.623 63.824
    75%Foo/2.2 min 52.515 55.115 63.756 62.937
    75%Foo/2 min 47.767 50.627 60.131 59.231
    70%Foo/2.2 min 45.849 48.814 58.667 57.734
    70%Foo/2 min 40.434 43.696 54.534 53.507
    65%Foo/2.2 min 37.848 41.251 52.56 51.489
    65%Foo/2 min 31.632 35.376 47.816 46.637
    60%Foo/2.2 min 29.118 33 45.897 44.675
    60%Foo/2 min 22.03 26.3 40.487 39.143
    下载: 导出CSV

    表  12  超声速发动机模型在两种不同LTO模式下的慢车点燃烧室负荷系数

    Table  12.   LOADING of Supersonic Engine Model at idle point in two different LTO modes

    Ts/Foo)/% 空气流量/(kg/s) 燃烧室入口压力/kPa 燃烧室入口温度/K 燃烧室负荷系数/
    10−8 (kg/(s·Pa1.8·m3))
    5.8 13.088 512.976 488.73 1.082
    7 13.642 529.46 493.57 1.048
    下载: 导出CSV

    表  13  超声速发动机模型TS为10%Foo和13%Foo的燃烧室负荷系数

    Table  13.   LOADING for a Supersonic Engine Model with TS at 10%Foo and 13%Foo

    Ts/Foo)/% 空气流量/(kg/s) 燃烧室入口压力/kPa 燃烧室入口温度/K 燃烧室负荷系数/
    10−9 (kg/(s·Pa 1.8·m3))
    10 15.214 584.67 508.87 9.292
    13 17.165 635.575 520.37 8.681
    下载: 导出CSV
  • [1] SUN Yicheng,SMITH H. Review and prospect of supersonic business jet design[J]. Progress in Aerospace Sciences,2017,90: 12-38. doi: 10.1016/j.paerosci.2016.12.003
    [2] 徐悦,韩忠华,尤延铖,等. 新一代绿色超声速民机的发展现状与挑战[J]. 科学通报,2020,65(增刊1): 127-133. XU Yue,HAN Zhonghua,YOU Yancheng,et al. Progress and challenges of next generation green supersonic civil aircraft[J]. Chinese Science Bulletin,2020,65(Suppl.1): 127-133. (in Chinese

    XU Yue, HAN Zhonghua, YOU Yancheng, et al. Progress and challenges of next generation green supersonic civil aircraft[J]. Chinese Science Bulletin, 2020, 65(Suppl.1): 127-133. (in Chinese)
    [3] CANDEL S. Concorde and the future of supersonic transport[J]. Journal of Propulsion and Power,2004,20(1): 59-68. doi: 10.2514/1.9180
    [4] HARDEMAN A,MAURICE L. Sustainability: key to enable next generation supersonic passenger flight[J]. Proceedings of IOP (Institute of Physics) Conference Series: Materials Science and Engineering,2021,1024(1): 012053. doi: 10.1088/1757-899X/1024/1/012053
    [5] 邓帆,焦子涵,谢峰,等. 超声速运输系统技术研究进展综述[J]. 飞航导弹,2017(8): 32-37,51. DENG Fan,JIAO Zihan,XIE Feng,et al. Summary of research progress of supersonic transportation system technology[J]. Aerodynamic Missile Journal,2017(8): 32-37,51. (in Chinese doi: 10.16338/j.issn.1009-1319.2017.08.07

    DENG Fan, JIAO Zihan, XIE Feng, et al. Summary of research progress of supersonic transportation system technology[J]. Aerodynamic Missile Journal, 2017(8): 32-37, 51. (in Chinese) doi: 10.16338/j.issn.1009-1319.2017.08.07
    [6] APROVITOLA A,DI NUZZO P E,PEZZELLA G,et al. Aerodynamic analysis of a supersonic transport aircraft at landing speed conditions[J]. Energies,2021,14(20): 6615. doi: 10.3390/en14206615
    [7] BERTON J J,HUFF D L,GEISELHART K,et al. Supersonic technology concept aeroplanes for environmental studies: AIAA2020-0263[R]. Reston,US: the AIAA SciTech Forum,2020.
    [8] MIRZOYAN A. Cruise NOx emission reduction by the rational choice of supersonic business jet engine design variables[C]// Proceedings of the 27th International Congress of the Aeronautical Science. Nice,France: International Council of the Aeronautical Sciences,2010: 1-5.
    [9] ZAPOROZHETS O,SYNYLO K. Improvements on aircraft engine emission and emission inventory assessment inside the airport area[J]. Energy,2017,140: 1350-1357. doi: 10.1016/j.energy.2017.07.178
    [10] 李超役,孙见忠,闫洪胜,等. 基于QAR数据的民航发动机尾气污染物排放量估算[J]. 环境工程学报,2017,11(6): 3607-3616. LI Chaoyi,SUN Jianzhong,YAN Hongsheng,et al. Estimation of exhausts pollution emissions for civil aircraft engine based on QAR data[J]. Chinese Journal of Environmental Engineering,2017,11(6): 3607-3616. (in Chinese doi: 10.12030/j.cjee.201604049

    LI Chaoyi, SUN Jianzhong, YAN Hongsheng, et al. Estimation of exhausts pollution emissions for civil aircraft engine based on QAR data[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3607-3616. (in Chinese) doi: 10.12030/j.cjee.201604049
    [11] CHEN Min,JIA Zihao,TANG Hailong,et al. Research on simulation and performance optimization of Mach 4 civil aircraft propulsion concept[J]. International Journal of Aerospace Engineering,2019,2019: 1-19.
    [12] ZHU Changxin,HU Rong,LIU Bowen,et al. Uncertainty and its driving factors of airport aircraft pollutant emissions assessment[J]. Transportation Research Part D: Transport and Environment,2021,94: 102791. doi: 10.1016/j.trd.2021.102791
    [13] 张萃琦,陈龙飞,丁水汀. 基于分段FOX方法的民航LTO黑碳质量排放清单计算分析[J]. 航空动力学报,2021,36(6): 1253-1262. ZHANG Cuiqi,CHEN Longfei,DING Shuiting. Civil aviation LTO black carbon mass emission inventory based on piecewise FOX method[J]. Journal of Aerospace Power,2021,36(6): 1253-1262. (in Chinese doi: 10.13224/j.cnki.jasp.2021.06.014

    ZHANG Cuiqi, CHEN Longfei, DING Shuiting. Civil aviation LTO black carbon mass emission inventory based on piecewise FOX method[J]. Journal of Aerospace Power, 2021, 36(6): 1253-1262. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.06.014
    [14] 唐海龙,朱之丽,罗安阳,等. 以已有核心机为基础进行发动机系列发展的初步研究[J]. 航空动力学报,2004,19(5): 636-639. TANG Hailong,ZHU Zhili,LUO Anyang,et al. A preliminary analysis of developing series of engines based on an existing core engine[J]. Journal of Aerospace Power,2004,19(5): 636-639. (in Chinese doi: 10.3969/j.issn.1000-8055.2004.05.011

    TANG Hailong, ZHU Zhili, LUO Anyang, et al. A preliminary analysis of developing series of engines based on an existing core engine[J]. Journal of Aerospace Power, 2004, 19(5): 636-639. (in Chinese) doi: 10.3969/j.issn.1000-8055.2004.05.011
    [15] International Civil Aviation Organization(ICAO). Engine exhaust emissions data bank[R]. Montreal: International Civil Aviation Organization,2021.
    [16] DUBOIS D,PAYNTER G C. “Fuel flow method2” for estimating aircraft emissions[C]//SAE Technical Paper Series. Warrendale,US: SAE International,2006: 1-14.
    [17] International Civil Aviation Organization (ICAO). Environmental protection,annex 16 to the convention on international civil aviation: Volume Ⅱ aircraft engine emissions[R]. Montreal: International Civil Aviation Organization,2017.
    [18] NÖDING M,SCHUERMANN M,BERTSCH L,et al. Simulation of landing and take-off noise for supersonic transport aircraft at a conceptual design fidelity level[J]. Aerospace,2021,9(1): 9. doi: 10.3390/aerospace9010009
    [19] RIZZI S A,BERTON J J,TUTTLE B C. Auralization of a supersonic business jet using advanced takeoff procedures: AIAA2020-0266 [R]. Reston,US: AIAA SciTech Forum,2020:
    [20] 彭泽琰,刘刚. 航空燃气轮机原理[M]. 北京: 国防工业出版社,2000. PENG Zeyan,LIU Gang. Principles of aviation gas turbine[M]. Beijing: National Defense Industry Press,2000. (in Chinese

    PENG Zeyan, LIU Gang. Principles of aviation gas turbine[M]. Beijing: National Defense Industry Press, 2000. (in Chinese)
    [21] 黄勇,林宇震,樊未军,等. 燃烧与燃烧室[M]. 北京: 北京航空航天大学出版社,2009. HUANG Yong,LIN Yuzhen,FAN Weijun, et al. Combustion and combustion chamber[M]. Beijing: Beihang University Press,2009. (in Chinese

    HUANG Yong, LIN Yuzhen, FAN Weijun, et al. Combustion and combustion chamber[M]. Beijing: Beihang University Press, 2009. (in Chinese)
    [22] WALSH P P,FLETCHER P. Gas turbine performance[M]. 2nd ed. Malden,US: Blackwell Science,2004.
    [23] 李书明,赵洪利. 民航发动机构造与系统[M]. 北京: 中国民航出版社,2014. LI Shuming, ZHAO Hongli. Civil aviation engine construction and system[M]. Beijing: China Civil Aviation Publishing House,2014. (in Chinese

    LI Shuming, ZHAO Hongli. Civil aviation engine construction and system[M]. Beijing: China Civil Aviation Publishing House, 2014. (in Chinese)
  • 加载中
图(13) / 表(13)
计量
  • 文章访问数:  45
  • HTML浏览量:  18
  • PDF量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-12
  • 网络出版日期:  2023-11-30

目录

    /

    返回文章
    返回