Prediction and analysis of LTO pollutant emission characteristics of supersonic engine
-
摘要:
为合理地分析超声速发动机在起降着陆(landing and take-off,LTO)循环中的污染物排放特性,构建了基于CFM56-7B27核心机的超声速发动机模型。通过建立排放计算模型计算了LTO污染物排放指数(emission index,EI),并分析了其排放特性;研究爬升和慢车阶段污染物排放特性对LTO超声速模式标准设定的影响,进而确定更具代表性的LTO超声速模式标准。分析结果表明:不同LTO阶段的推力设置(thrust setting,TS)和模式时间(time in mode,TIM)对污染物排放特性的影响存在差异性;在LTO标准研究方面,60%额定推力、2 min模式时间的爬升点氮氧化物的排放质量/额定推力更接近于超声速爬升轨迹,慢车点TS在不低于10%额定推力时更能满足污染物(一氧化碳、未燃烧碳氢)排放特性所限制的燃烧效率要求,因此以60%额定推力、2 min模式时间作为LTO超声速模式爬升点标准、以TS不低于10%额定推力作为LTO超声速模式慢车点标准更为合理。
-
关键词:
- 超声速发动机 /
- 起降着陆(LTO)循环标准 /
- 污染物排放特性 /
- p3-T3方法 /
- 预测
Abstract:In order to reasonably analyze the pollutant emission characteristics of the supersonic engine during the landing and take-off (LTO) cycle, a supersonic engine model based on the CFM56-7B27 engine core was built. The emission index (EI) of LTO pollutants was calculated by establishing an emission calculation model, and the emission characteristics were analyzed; the influences of pollutant emission characteristics in climb and idle phases on the LTO supersonic mode standard setting were studied, and then a more representative LTO supersonic mode standard was determined. Results showed that the thrust setting (TS) and time in mode (TIM) in different LTO phases had different effects on pollutant emission characteristics; in the research of LTO standard, the mass of the oxides of nitrogen emitted/rated thrust at 60% of the rated thrust and TIM of 2 min climb point was closer to the supersonic climbing trajectories, and the TS of the idle point can better meet the combustion efficiency requirements limited by the emission characteristics of pollutants (carbon monoxide, unburned hydrocarbons) when it was not less than 10% of the rated thrust. Therefore, it is more reasonable to take 60% of the rated thrust and TIM of 2 min as the climb point standard of the LTO supersonic mode and the TS not less than 10% of the rated thrust as the idle point standard of the LTO supersonic mode.
-
表 1 LTO亚声速模式标准定义
Table 1. Definition of LTO subsonic mode standard
阶段 (Ts/Foo)/% Mt/min 起飞 100 0.7 爬升 85 2.2 进近 30 4.0 慢车 7 26.0 表 2 LTO超声速模式标准定义
Table 2. Definition of LTO supersonic mode standard
阶段 (Ts/Foo)/% Mt/min 起飞 100 1.2 爬升 65 2.0 下降 15 1.2 进近 34 2.3 慢车 5.8 26.0 表 3 超声速发动机模型在LTO亚声速模式的建模数据
Table 3. Modeling data of the Supersonic Engine Model in LTO subsonic mode
阶段 (Ts/Foo)/% 推力大小/kN Mt/min 燃烧室入口压力/kPa 燃烧室入口温度/K 燃油流量/(kg/s) 油气比 起飞 100 73.922 0.7 2203.555 757.07 0.94199 0.01545 爬升 85 62.834 2.2 1942.036 725.77 0.77599 0.01302 进近 30 22.177 4 922.058 580.91 0.25945 0.00872 慢车 7 5.175 26 529.46 493.57 0.09777 0.00717 表 4 超声速发动机模型在LTO超声速模式的建模数据
Table 4. Modeling data of the Supersonic Engine Model in LTO supersonic mode
阶段 (Ts/Foo)/% 推力大小/kN Mt/min 燃烧室入口压力/kPa 燃烧室入口温度/K 燃油流量/(kg/s) 油气比 起飞 100 73.922 1.2 2203.555 757.07 0.94199 0.01545 爬升 65 48.049 2 1559.392 678.95 0.56778 0.01023 下降 15 11.088 1.2 673.811 528.1 0.15558 0.00796 进近 34 25.133 2.3 985.791 592.78 0.29279 0.00896 慢车 5.8 4.287 26 512.976 488.73 0.09166 0.007 表 5 CFM56-7B系列发动机LTO NOx排放指数
Table 5. LTO NOx emission index of CFM56-7B series engines
发动机型号 额定推力/kN Ie,NOx/(g/kg) 起飞 爬升 进近 慢车 CFM56-7B18 86.7 14.81 13.00 7.78 3.65 CFM56-7B20 91.6 15.61 13.53 7.98 3.77 CFM56-7B22 101.0 17.40 14.67 8.35 3.95 CFM56-7B24 107.6 18.93 15.60 8.60 4.09 CFM56-7B26 117.0 21.79 17.08 8.93 4.27 CFM56-7B27 121.4 23.94 17.89 9.09 4.36 表 6 CFM56-7B系列发动机LTO CO排放指数
Table 6. LTO CO emission index of CFM56-7B series engines
发动机型号 额定推力/kN Ie,CO/(g/kg) 起飞 爬升 进近 慢车 CFM56-7B18 86.7 0.17 0.28 5.54 46.64 CFM56-7B20 91.6 0.15 0.23 5.03 43.31 CFM56-7B22 101.0 0.16 0.17 4.18 37.90 CFM56-7B24 107.6 0.18 0.15 3.68 34.71 CFM56-7B26 117.0 0.25 0.16 3.07 30.94 CFM56-7B27 121.4 0.31 0.17 2.82 29.39 表 7 CFM56-7B系列发动机LTO UHC排放指数
Table 7. LTO UHC emission index of CFM56-7B series engines
发动机型号 额定推力/kN Ie,UHC/(g/kg) 起飞 爬升 进近 慢车 CFM56-7B18 86.7 0.03 0.03 0.08 4.51 CFM56-7B20 91.6 0.03 0.03 0.08 3.84 CFM56-7B22 101.0 0.02 0.03 0.07 2.83 CFM56-7B24 107.6 0.02 0.03 0.06 2.30 CFM56-7B26 117.0 0.02 0.02 0.05 1.75 CFM56-7B27 121.4 0.03 0.02 0.05 1.54 表 8 超声速发动机模型在LTO亚声速模式下的排放指数
Table 8. Emission index of the Supersonic Engine Model in LTO subsonic mode
g/kg 阶段 $ I_{{\mathrm{e,NOx}}} $ $I_{{\mathrm{e,CO}}} $ $I_{{\mathrm{e,UHC}}} $ 起飞 16.268 0.866 0.003 爬升 13.584 1.095 0.004 进近 7.717 4.838 0.044 慢车 3.696 44.821 4.078 表 9 超声速发动机模型在LTO超声速模式下的排放指数
Table 9. Emission index of the Supersonic Engine Model in LTO supersonic mode
g/kg 阶段 $I_{{\mathrm{e,NOx}}} $ $I_{{\mathrm{e,CO}}} $ $I_{{\mathrm{e,UHC}}} $ 起飞 16.268 0.866 0.003 爬升 11.171 1.54 0.006 下降 5.251 13.897 0.307 进近 8.109 3.972 0.031 慢车 3.534 58.779 7.485 表 10 降噪爬升轨迹定义
Table 10. Definition of the noise-reduced climbing trajectory
轨迹名称 起飞阶段
(Ts/Foo)/%爬升阶段1 爬升阶段2 爬升阶段3 高度范围/m (Ts/Foo)/% 高度范围/m (Ts/Foo)/% 高度范围/m (Ts/Foo)/% 无减推轨迹 100 10.668~914.4 100 标准轨迹 100 10.668~584.7 100 584.7~914.4 65 先进轨迹 100 10.668~15.3 100 15.3~544.1 85 544.1~914.4 65 最小噪声减推轨迹 100 10.668~25 100 25~914.4 60 表 11 降噪爬升轨迹与潜在LTO爬升点之间的Dp/Foo对比
Table 11. Dp/Foo comparison between the noise-reduced climbing trajectory and potential LTO climbing points
潜在的LTO
爬升点工况轨迹与爬升点之间的相对误差值/% 无减推
轨迹标准
轨迹先进
轨迹最小噪声
减推轨迹85%Foo/2.2 min 62.602 64.650 71.455 70.810 85%Foo/2 min 58.862 61.115 68.600 67.891 80%Foo/2.2 min 57.865 60.173 67.839 67.113 80%Foo/2 min 53.652 56.19 64.623 63.824 75%Foo/2.2 min 52.515 55.115 63.756 62.937 75%Foo/2 min 47.767 50.627 60.131 59.231 70%Foo/2.2 min 45.849 48.814 58.667 57.734 70%Foo/2 min 40.434 43.696 54.534 53.507 65%Foo/2.2 min 37.848 41.251 52.56 51.489 65%Foo/2 min 31.632 35.376 47.816 46.637 60%Foo/2.2 min 29.118 33 45.897 44.675 60%Foo/2 min 22.03 26.3 40.487 39.143 表 12 超声速发动机模型在两种不同LTO模式下的慢车点燃烧室负荷系数
Table 12. LOADING of Supersonic Engine Model at idle point in two different LTO modes
(Ts/Foo)/% 空气流量/(kg/s) 燃烧室入口压力/kPa 燃烧室入口温度/K 燃烧室负荷系数/
10−8 (kg/(s·Pa1.8·m3))5.8 13.088 512.976 488.73 1.082 7 13.642 529.46 493.57 1.048 表 13 超声速发动机模型TS为10%Foo和13%Foo的燃烧室负荷系数
Table 13. LOADING for a Supersonic Engine Model with TS at 10%Foo and 13%Foo
(Ts/Foo)/% 空气流量/(kg/s) 燃烧室入口压力/kPa 燃烧室入口温度/K 燃烧室负荷系数/
10−9 (kg/(s·Pa 1.8·m3))10 15.214 584.67 508.87 9.292 13 17.165 635.575 520.37 8.681 -
[1] SUN Yicheng,SMITH H. Review and prospect of supersonic business jet design[J]. Progress in Aerospace Sciences,2017,90: 12-38. doi: 10.1016/j.paerosci.2016.12.003 [2] 徐悦,韩忠华,尤延铖,等. 新一代绿色超声速民机的发展现状与挑战[J]. 科学通报,2020,65(增刊1): 127-133. XU Yue,HAN Zhonghua,YOU Yancheng,et al. Progress and challenges of next generation green supersonic civil aircraft[J]. Chinese Science Bulletin,2020,65(Suppl.1): 127-133. (in ChineseXU Yue, HAN Zhonghua, YOU Yancheng, et al. Progress and challenges of next generation green supersonic civil aircraft[J]. Chinese Science Bulletin, 2020, 65(Suppl.1): 127-133. (in Chinese) [3] CANDEL S. Concorde and the future of supersonic transport[J]. Journal of Propulsion and Power,2004,20(1): 59-68. doi: 10.2514/1.9180 [4] HARDEMAN A,MAURICE L. Sustainability: key to enable next generation supersonic passenger flight[J]. Proceedings of IOP (Institute of Physics) Conference Series: Materials Science and Engineering,2021,1024(1): 012053. doi: 10.1088/1757-899X/1024/1/012053 [5] 邓帆,焦子涵,谢峰,等. 超声速运输系统技术研究进展综述[J]. 飞航导弹,2017(8): 32-37,51. DENG Fan,JIAO Zihan,XIE Feng,et al. Summary of research progress of supersonic transportation system technology[J]. Aerodynamic Missile Journal,2017(8): 32-37,51. (in Chinese doi: 10.16338/j.issn.1009-1319.2017.08.07DENG Fan, JIAO Zihan, XIE Feng, et al. Summary of research progress of supersonic transportation system technology[J]. Aerodynamic Missile Journal, 2017(8): 32-37, 51. (in Chinese) doi: 10.16338/j.issn.1009-1319.2017.08.07 [6] APROVITOLA A,DI NUZZO P E,PEZZELLA G,et al. Aerodynamic analysis of a supersonic transport aircraft at landing speed conditions[J]. Energies,2021,14(20): 6615. doi: 10.3390/en14206615 [7] BERTON J J,HUFF D L,GEISELHART K,et al. Supersonic technology concept aeroplanes for environmental studies: AIAA2020-0263[R]. Reston,US: the AIAA SciTech Forum,2020. [8] MIRZOYAN A. Cruise NOx emission reduction by the rational choice of supersonic business jet engine design variables[C]// Proceedings of the 27th International Congress of the Aeronautical Science. Nice,France: International Council of the Aeronautical Sciences,2010: 1-5. [9] ZAPOROZHETS O,SYNYLO K. Improvements on aircraft engine emission and emission inventory assessment inside the airport area[J]. Energy,2017,140: 1350-1357. doi: 10.1016/j.energy.2017.07.178 [10] 李超役,孙见忠,闫洪胜,等. 基于QAR数据的民航发动机尾气污染物排放量估算[J]. 环境工程学报,2017,11(6): 3607-3616. LI Chaoyi,SUN Jianzhong,YAN Hongsheng,et al. Estimation of exhausts pollution emissions for civil aircraft engine based on QAR data[J]. Chinese Journal of Environmental Engineering,2017,11(6): 3607-3616. (in Chinese doi: 10.12030/j.cjee.201604049LI Chaoyi, SUN Jianzhong, YAN Hongsheng, et al. Estimation of exhausts pollution emissions for civil aircraft engine based on QAR data[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3607-3616. (in Chinese) doi: 10.12030/j.cjee.201604049 [11] CHEN Min,JIA Zihao,TANG Hailong,et al. Research on simulation and performance optimization of Mach 4 civil aircraft propulsion concept[J]. International Journal of Aerospace Engineering,2019,2019: 1-19. [12] ZHU Changxin,HU Rong,LIU Bowen,et al. Uncertainty and its driving factors of airport aircraft pollutant emissions assessment[J]. Transportation Research: Part D Transport and Environment,2021,94: 102791. doi: 10.1016/j.trd.2021.102791 [13] 张萃琦,陈龙飞,丁水汀. 基于分段FOX方法的民航LTO黑碳质量排放清单计算分析[J]. 航空动力学报,2021,36(6): 1253-1262. ZHANG Cuiqi,CHEN Longfei,DING Shuiting. Civil aviation LTO black carbon mass emission inventory based on piecewise FOX method[J]. Journal of Aerospace Power,2021,36(6): 1253-1262. (in Chinese doi: 10.13224/j.cnki.jasp.2021.06.014ZHANG Cuiqi, CHEN Longfei, DING Shuiting. Civil aviation LTO black carbon mass emission inventory based on piecewise FOX method[J]. Journal of Aerospace Power, 2021, 36(6): 1253-1262. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.06.014 [14] 唐海龙,朱之丽,罗安阳,等. 以已有核心机为基础进行发动机系列发展的初步研究[J]. 航空动力学报,2004,19(5): 636-639. TANG Hailong,ZHU Zhili,LUO Anyang,et al. A preliminary analysis of developing series of engines based on an existing core engine[J]. Journal of Aerospace Power,2004,19(5): 636-639. (in Chinese doi: 10.3969/j.issn.1000-8055.2004.05.011TANG Hailong, ZHU Zhili, LUO Anyang, et al. A preliminary analysis of developing series of engines based on an existing core engine[J]. Journal of Aerospace Power, 2004, 19(5): 636-639. (in Chinese) doi: 10.3969/j.issn.1000-8055.2004.05.011 [15] International Civil Aviation Organization (ICAO). Engine exhaust emissions data bank[R]. Montreal: International Civil Aviation Organization,2021. [16] DUBOIS D,PAYNTER G C. “Fuel flow method2” for estimating aircraft emissions[C]//SAE Technical Paper Series. Warrendale,US: SAE International,2006: 1-14. [17] International Civil Aviation Organization (ICAO). Environmental protection,annex 16 to the convention on international civil aviation: Volume Ⅱ aircraft engine emissions[R]. Montreal: International Civil Aviation Organization,2017. [18] NÖDING M,SCHUERMANN M,BERTSCH L,et al. Simulation of landing and take-off noise for supersonic transport aircraft at a conceptual design fidelity level[J]. Aerospace,2021,9(1): 9. doi: 10.3390/aerospace9010009 [19] RIZZI S A,BERTON J J,TUTTLE B C. Auralization of a supersonic business jet using advanced takeoff procedures: AIAA 2020-0266 [R]. Reston,US: AIAA SciTech Forum,2020: [20] 彭泽琰,刘刚. 航空燃气轮机原理[M]. 北京: 国防工业出版社,2000. PENG Zeyan,LIU Gang. Principles of aviation gas turbine[M]. Beijing: National Defense Industry Press,2000. (in ChinesePENG Zeyan, LIU Gang. Principles of aviation gas turbine[M]. Beijing: National Defense Industry Press, 2000. (in Chinese) [21] 黄勇,林宇震,樊未军,等. 燃烧与燃烧室[M]. 北京: 北京航空航天大学出版社,2009. HUANG Yong,LIN Yuzhen,FAN Weijun,et al. Combustion and combustion chamber[M]. Beijing: Beihang University Press,2009. (in ChineseHUANG Yong, LIN Yuzhen, FAN Weijun, et al. Combustion and combustion chamber[M]. Beijing: Beihang University Press, 2009. (in Chinese) [22] WALSH P P,FLETCHER P. Gas turbine performance[M]. 2nd ed. Malden,US: Blackwell Science,2004. [23] 李书明,赵洪利. 民航发动机构造与系统[M]. 北京: 中国民航出版社,2014. LI Shuming, ZHAO Hongli. Civil aviation engine construction and system[M]. Beijing: China Civil Aviation Publishing House,2014. (in ChineseLI Shuming, ZHAO Hongli. Civil aviation engine construction and system[M]. Beijing: China Civil Aviation Publishing House, 2014. (in Chinese)