留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某型机翼燃油箱晃动分析及防晃结构优化

唐祚旻 姜春英 鲁墨武 裴秀果 殷思羽

唐祚旻, 姜春英, 鲁墨武, 等. 某型机翼燃油箱晃动分析及防晃结构优化[J]. 航空动力学报, 2024, 39(8):20220506 doi: 10.13224/j.cnki.jasp.20220506
引用本文: 唐祚旻, 姜春英, 鲁墨武, 等. 某型机翼燃油箱晃动分析及防晃结构优化[J]. 航空动力学报, 2024, 39(8):20220506 doi: 10.13224/j.cnki.jasp.20220506
TANG Zuomin, JIANG Chunying, LU Mowu, et al. Sloshing analysis and anti-sloshing structure optimization of a wing fuel tank[J]. Journal of Aerospace Power, 2024, 39(8):20220506 doi: 10.13224/j.cnki.jasp.20220506
Citation: TANG Zuomin, JIANG Chunying, LU Mowu, et al. Sloshing analysis and anti-sloshing structure optimization of a wing fuel tank[J]. Journal of Aerospace Power, 2024, 39(8):20220506 doi: 10.13224/j.cnki.jasp.20220506

某型机翼燃油箱晃动分析及防晃结构优化

doi: 10.13224/j.cnki.jasp.20220506
基金项目: 辽宁省自然科学基金(2019_KF_01_11)
详细信息
    作者简介:

    唐祚旻(1998-),硕士生,主要从事飞机油箱液体晃动研究。E-mail:1275463250@qq.com

    通讯作者:

    姜春英(1978-),女,副教授,博士,主要从事航空航天测控与仿真技术研究。E-mail:99448588@qq.com

  • 中图分类号: V222

Sloshing analysis and anti-sloshing structure optimization of a wing fuel tank

  • 摘要:

    针对某型多隔仓机翼整体燃油箱,基于流体体积(VOF)方法模拟燃油晃动自由液面变化,分析了燃油箱在多工况下的燃油晃动特性;根据分析结果,选取肋板溢油口构型,串油孔直径与肋板数量为设计变量,以燃油质心相对位移幅值为优化目标,设计正交实验设计,通过极差分析与方差分析法对油箱肋板构型进行优化,得出最优肋板构型。结果表明:VOF法可以准确有效的模拟燃油流动特性,燃油箱肋板可有效抑制燃油晃动;优化肋油箱与初始油箱对比,平均燃油质心相对位移幅值降低66.54%,最大位移幅值降低46.43%;燃油质心位移得到有效控制,机翼油箱的防晃效果得到提升。

     

  • 图 1  机翼油箱简化模型及网格

    Figure 1.  Simplified model and grid of wing fuel tank

    图 2  机翼转动中心(单位: m)

    Figure 2.  Wing center of rotation (unit: m)

    图 3  液面行进状态对比

    Figure 3.  Comparison of liquid level traveling state

    图 4  壁面压力对比

    Figure 4.  Wall pressure contrast

    图 5  滚转工况下燃油速度云图

    Figure 5.  Fuel speed nephogram under rolling condition

    图 6  滚转工况下燃油与油箱质心相对位移

    Figure 6.  Relative displacement of fuel and fuel tank centroid under rolling condition

    图 7  俯仰工况下燃油速度云图

    Figure 7.  Fuel speed nephogram under pitching condition

    图 8  俯仰工况下燃油与油箱质心相对位移

    Figure 8.  Relative displacement of fuel and fuel tank centroid under pitching condition

    图 9  耦合工况下燃油速度云图

    Figure 9.  Fuel speed nephogram under coupling conditions

    图 10  耦合工况下燃油与油箱质心相对位移

    Figure 10.  Relative displacement of fuel and fuel tank centroid under coupling condition

    图 11  设计变量示意图(单位: mm)

    Figure 11.  Schematic of design variables (unit: mm)

    图 12  因素水平趋势

    Figure 12.  Factor level trend

    图 13  优化前后燃油质心相对位移幅值

    Figure 13.  Relative displacement amplitude of fuel centroid before and after optimization

    表  1  实验因素及水平

    Table  1.   Experimental factors and level

    因素参数水平1水平2水平3
    X1(因素A)溢油口构型宽体窄体传统
    X2(因素B)串油孔直径/mm7090110
    X3(因素C)肋板数量181614
    下载: 导出CSV

    表  2  正交实验设计及仿真计算结果

    Table  2.   Orthogonal experimental design and simulation calculation results

    试验号因素水平误差列燃油质心相对
    位移幅值y
    因素A因素B因素C
    111110.4741
    212320.6074
    313230.4185
    421330.6684
    522220.3528
    623110.3986
    731220.3750
    832110.4011
    933330.6525
    下载: 导出CSV

    表  3  正交实验极差分析表

    Table  3.   Range analysis of orthogonal experimental

    参数 因素A 因素B 因素C 误差列
    K1 1.5000 1.5175 1.2738 1.2738
    K2 1.4198 1.3613 1.1463 1.3352
    K3 1.4286 1.4696 1.9283 1.7394
    $\bar K_1 $ 0.5000 0.5058 0.4246 0.4246
    $\bar K_2 $ 0.4732 0.4538 0.3821 0.4451
    $\bar K_3 $ 0.4762 0.4899 0.6428 0.5798
    R 0.0267 0.0521 0.2607 0.1552
    下载: 导出CSV

    表  4  正交实验方差分析表

    Table  4.   Variance analysis of orthogonal experiments

    方差来源离差平方和自由度均方差FPFcrit
    因素A0.00120.00050.3811230.72404819
    因素B0.004320.00211.6172160.38208519
    因素C0.117420.058744.454430.02219
    误差/组内0.002620.0013
    综合0.12538
    下载: 导出CSV
  • [1] RAFIEE A,PISTANI F,THIAGARAJAN K. Study of liquid sloshing: numerical and experimental approach[J]. Computational Mechanics,2011,47(1): 65-75. doi: 10.1007/s00466-010-0529-6
    [2] DELORME L,COLAGROSSI A,SOUTO-IGLESIAS A,et al. A set of canonical problems in sloshing,Part I: Pressure field in forced roll-comparison between experimental results and SPH[J]. Ocean Engineering,2009,36(2): 168-178. doi: 10.1016/j.oceaneng.2008.09.014
    [3] SOUTO-IGLESIAS A,BOTIA-VERA E,MARTÍN A,et al. A set of canonical problems in sloshing. Part 0: experimental setup and data processing[J]. Ocean Engineering,2011,38(16): 1823-1830. doi: 10.1016/j.oceaneng.2011.09.008
    [4] SOUTO-IGLESIAS A,BULIAN G,BOTIA-VERA E. A set of canonical problems in sloshing. Part 2: influence of tank width on impact pressure statistics in regular forced angular motion[J]. Ocean Engineering,2015,105: 136-159. doi: 10.1016/j.oceaneng.2015.06.016
    [5] 张健,方杰,范波芹. VOF方法理论与应用综述[J]. 水利水电科技进展,2005,25(2): 67-70. ZHANG Jian,FANG Jie,FAN Boqin. Advances in research of VOF method[J]. Advances in Science and Technology of Water Resources,2005,25(2): 67-70. (in Chinese

    ZHANG Jian, FANG Jie, FAN Boqin. Advances in research of VOF method[J]. Advances in Science and Technology of Water Resources, 2005, 25(2): 67-70. (in Chinese)
    [6] 晋永华,厉彦忠,王磊,等. 简谐激励下大型低温贮箱防晃设计[J]. 航空动力学报,2015,30(6): 1478-1485. JIN Yonghua,LI Yanzhong,WANG Lei,et al. Design of slosh baffle in large cryogenic tank under harmonic excitation[J]. Journal of Aerospace Power,2015,30(6): 1478-1485. (in Chinese

    JIN Yonghua, LI Yanzhong, WANG Lei, et al. Design of slosh baffle in large cryogenic tank under harmonic excitation[J]. Journal of Aerospace Power, 2015, 30(6): 1478-1485. (in Chinese)
    [7] 袁雄飞. 基于VOF方法的机翼油箱燃油晃动分析与防晃研究[D]. 哈尔滨: 哈尔滨工业大学,2017. YUAN Xiongfei. Research of fuel sloshing in aircraft wing tank based on VOF method and sloshing suppression[D]. Harbin: Harbin Institute of Technology,2017. (in Chinese

    YUAN Xiongfei. Research of fuel sloshing in aircraft wing tank based on VOF method and sloshing suppression[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
    [8] CAVALAGLI N,BISCARINI C,FACCI A L,et al. Experimental and numerical analysis of energy dissipation in a sloshing absorber[J]. Journal of Fluids and Structures,2017,68: 466-481. doi: 10.1016/j.jfluidstructs.2016.11.020
    [9] LYU Wenjing,EL MOCTAR O,POTTHOFF R,et al. Experimental and numerical investigation of sloshing using different free surface capturing methods[J]. Applied Ocean Research,2017,68: 307-324. doi: 10.1016/j.apor.2017.09.008
    [10] 杨唱,孙冰,方杰. 航天器贮箱出流过程液体晃动及防晃[J]. 航空动力学报,2018,33(12): 3065-3072. YANG Chang,SUN Bing,FANG Jie. Liquid sloshing and anti-sloshing of spacecraft tank during outflow[J]. Journal of Aerospace Power,2018,33(12): 3065-3072. (in Chinese doi: 10.13224/j.cnki.jasp.2018.12.029

    YANG Chang, SUN Bing, FANG Jie. Liquid sloshing and anti-sloshing of spacecraft tank during outflow[J]. Journal of Aerospace Power, 2018, 33(12): 3065-3072. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.12.029
    [11] SAGHI H,MIKKOLA T,HIRDARIS S. The influence of obliquely perforated dual-baffles on sway induced tank sloshing dynamics[J]. Proceedings of the Institution of Mechanical Engineers,Part M: Journal of Engineering for the Maritime Environment,2021,235(4): 905-920.
    [12] 张恩慧,何仁,苏卫东. 不同挡板结构对油箱内油液晃动特性的数值分析[J]. 吉林大学学报(工学版),2021,51(1): 83-95. ZHANG Enhui,HE Ren,SU Weidong. Numerical analysis of oil liquid sloshing characteristics in fuel tank with different baffle structures[J]. Journal of Jilin University (Engineering and Technology Edition),2021,51(1): 83-95. (in Chinese

    ZHANG Enhui, HE Ren, SU Weidong. Numerical analysis of oil liquid sloshing characteristics in fuel tank with different baffle structures[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 83-95. (in Chinese)
    [13] 张凯凯. 基于SPH方法的液舱内液体晃动分析及防晃研究[D]. 哈尔滨: 哈尔滨工业大学,2016. ZHANG Kaikai. Analysis and research of the liquid sloshing and sloshing suppression intanks based on sph method[D]. Harbin: Harbin Institute of Technology,2016. (in Chinese

    ZHANG Kaikai. Analysis and research of the liquid sloshing and sloshing suppression intanks based on sph method[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [14] 杨瑞. 基于ALE有限元法的飞机整体油箱燃油晃动特性研究[D]. 哈尔滨: 哈尔滨工业大学,2016. YANG Rui. Research of fuel sloshing in aircraft integral tanks by the ALE finite element method[D]. Harbin: Harbin Institute of Technology,2016. (in Chinese

    YANG Rui. Research of fuel sloshing in aircraft integral tanks by the ALE finite element method[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [15] 邹喜聪. 飞机机身油箱燃油晃动分析[D]. 哈尔滨: 哈尔滨工业大学,2012. ZOU Xicong. Fuel sloshing analysis in tanks of aircraft[D]. Harbin: Harbin Institute of Technology,2012. (in Chinese

    ZOU Xicong. Fuel sloshing analysis in tanks of aircraft[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)
    [16] 刘富. 贮箱内液体晃动动力学分析及结构防晃技术研究[D]. 南京: 南京航空航天大学,2010. LIU Fu. Dynamic analysis of liquid sloshing and sloshing suppression design for a tank[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2010. (in Chinese

    LIU Fu. Dynamic analysis of liquid sloshing and sloshing suppression design for a tank[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)
    [17] 曾宇,汪洪波,孙明波,等. SST湍流模型改进研究综述[J]. 航空学报,2023,44(9): 103-134. ZENG Yu,WANG Hongbo,SUN Mingbo,et al. SST turbulence model improvements: review[J]. Acta Aeronautica et Astronautica Sinica,2023,44(9): 103-134. (in Chinese

    ZENG Yu, WANG Hongbo, SUN Mingbo, et al. SST turbulence model improvements: review[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 103-134. (in Chinese)
    [18] 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4[S]. 北京: 航空工业出版社,2011: 106-110. Civil Aviation Administration of China. Airworthiness standard for transport aircraft: CCAR-25-R4 [S]. Beijing: Aviation Industry Press, 2011:106-110. (in Chinese

    Civil Aviation Administration of China. Airworthiness standard for transport aircraft: CCAR-25-R4 [S]. Beijing: Aviation Industry Press, 2011:106-110. (in Chinese)
    [19] SEBERRY J. Orthogonal designs[M]. Berlin,Germany: Springer,2017.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  33
  • HTML浏览量:  27
  • PDF量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-14
  • 网络出版日期:  2023-12-24

目录

    /

    返回文章
    返回