Effect of suction position on inlet performance of solid rocket ramjet
-
摘要:
对于设计马赫数为3的固冲发动机,用二维数值模拟的方法研究了一次燃气流量可调,即背压变化的范围较大的进气道,在不同位置设置抽吸孔对进气道不起动马赫数、抗反压能力以及总压恢复系数的影响。在内压缩段设置抽吸孔使进气道的不起动马赫数由2.7降低为2.4,抗反压能力提高了12.28%;外压缩段抽吸使进气道的不起动马赫数由2.7降为2.6,抗反压能力没有提高;而喉道段抽吸的进气道抗反压能力提高了11.24%,不起动马赫数没有变化。内压缩段和喉道段抽吸可以在一定工况下提高总压恢复,尤其是喉道段抽吸可以提高超额定工况下的总压恢复系数。最后提出了一种提高进气道在马赫数为3~5工况下运行的性能提升方案,在马赫数为4~5工况下总压恢复平均提高了5%左右。
Abstract:For a solid rocket ramjet with design Mach number of 3, two-dimensional numerical simulation was used to study the effects of suction holes at different locations on the unstart Mach number, anti-back pressure capability and total pressure recovery coefficient of an inlet with adjustable primary gas flow, i.e. a large range of back pressure changes. By setting suction holes in the inner compression section, the unstart Mach number of the inlet was reduced from 2.7 to 2.4, and the anti-back pressure capability was increased by 12.28%; The unstart Mach number of the inlet decreased from 2.7 to 2.6 due to the suction of the outer compression section, and the anti-back pressure capability was not improved; however, the anti-back pressure capability of throat suction inlet was increased by 11.24%, and the unstart Mach number did not change. The internal compression section and throat section suction can improve the total pressure recovery under certain working conditions, especially the total pressure recovery coefficient under over rated working conditions. Finally, a scheme to improve the performance of the inlet under Mach number of 3—5 was proposed, and the total pressure recovery under Mach number of 4—5 was increased by about 5% on average.
-
表 1 进气道参数
Table 1. Inlet parameters
参数 数值 进气道内部宽度/mm 100 喉道段高度h/mm 50 进气道总长度L/mm 1600 来流入射角α/(°) 0 二级压缩面角度δ2/(°) 21.5 唇口角度δ3/(°) 9.5 喉道段扩张角δ4/(°) 5 设计马赫数Mad 3 表 2 4种构型进气道性能对比
Table 2. Comparison of inlet performance of four configurations
构型 不起动马赫数 极限反压比 总压恢复系数 出口流量/(kg/s) Ma∞=3 Ma∞=4 Ma∞=3 Ma∞=4 1 2.7 19.22 0.577 0.335 0.89 1.20 2 2.4 21.58 0.574 0.345 0.83 1.13 3 2.6 18.63 0.556 0.337 0.83 1.13 4 2.7 21.38 0.555 0.33 0.82 1.17 表 3 不同构型的性能参数
Table 3. Performance parameters of different configurations
构型 Ma∞=4 Ma∞=4.5 Ma∞=5 总压恢复系数 流量系数 总压恢复系数 流量系数 总压恢复系数 流量系数 1 0.1724 1.0003 0.1946 0.9976 0.1746 0.9941 2 0.1705 0.9313 0.1603 0.9431 0.1599 0.9415 4 0.1481 0.9735 0.1995 0.9864 0.1742 0.9911 -
[1] 张荣胜. 固冲发动机新型进气道设计与调节规律研究[D]. 南京: 南京航空航天大学,2018. ZHANG Rongsheng. Design and analysis of a new-type variable geometry solid rocket ramjet inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2018. (in ChineseZHANG Rongsheng. Design and analysis of a new-type variable geometry solid rocket ramjet inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese) [2] 陈义. 超声速进气道起动特性研究[D]. 西安: 航天动力技术研究院,2016. CHEN Yi. Study on starting characteristics of supersonic inlet[D]. Xi’an: Academy of Aerospace Solid Propulsion Technology,2016. (in ChineseCHEN Yi. Study on starting characteristics of supersonic inlet[D]. Xi’an: Academy of Aerospace Solid Propulsion Technology, 2016. (in Chinese) [3] WIE D,KWOK F,WALSH R. Starting characteristics of supersonic inlets: AIAA-1996-2914[R]. Lake Buena Vista ,US: AIAA,1996. [4] 王翼. 高超声速进气道启动问题研究[D]. 长沙: 国防科学技术大学,2008. WANG Yi. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha: National University of Defense Technology,2008. (in ChineseWANG Yi. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha: National University of Defense Technology, 2008. (in Chinese) [5] 李祝飞. 高超声速进气道起动特性机理研究[D]. 合肥: 中国科学技术大学,2013. LI Zhufei. An investigation on starting characteristics of hypersonic inlets[D]. Hefei: University of Science and Technology of China,2013. (in ChineseLI Zhufei. An investigation on starting characteristics of hypersonic inlets[D]. Hefei: University of Science and Technology of China, 2013. (in Chinese) [6] FENG Xiping,LIN Zhiyuan,ZHENG Ya,et al. Adjusting principle of gas jet controlling inlet and numerical verification[J]. Science China Technological Sciences,2011,54(11): 2981-2986. doi: 10.1007/s11431-011-4553-3 [7] HAWS R G,NOALL J S,DAINES R L. Computational investigation of a method to compress air fluidically in supersonic inlets[J]. Journal of Spacecraft and Rockets,2001,38(1): 51-59. doi: 10.2514/2.3654 [8] ZHU Chengxiang,YANG Rijiong,CHEN Rongqian,et al. Investigation of adaptive slot control method for starting characteristics of hypersonic inlets[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2019,233(11): 4261-4271. [9] HERRMANN D,BLEM S,GULHAN A. Experimental study of boundary-layer bleed impact on ramjet inlet performance[J]. Journal of Propulsion and Power,2011,27(6): 1186-1195. doi: 10.2514/1.B34223 [10] 常军涛,鲍文,崔涛,等. 抽吸对高超声速进气道抗反压能力的影响[J]. 航空动力学报,2008,23(3): 505-509. CHANG Juntao,BAO Wen,CUI Tao,et al. Effect of suctions on maximum backpressure ratios of hypersonic inlets[J]. Journal of Aerospace Power,2008,23(3): 505-509. (in ChineseCHANG Juntao, BAO Wen, CUI Tao, et al. Effect of suctions on maximum backpressure ratios of hypersonic inlets[J]. Journal of Aerospace Power, 2008, 23(3): 505-509. (in Chinese) [11] 袁化成,梁德旺. 抽吸对高超声速进气道起动能力的影响[J]. 推进技术,2006,27(6): 525-528. YUAN Huacheng,LIANG Dewang. Effect of suction on starting of hypersonic inlet[J]. Journal of Propulsion Technology,2006,27(6): 525-528. (in ChineseYUAN Huacheng, LIANG Dewang. Effect of suction on starting of hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(6): 525-528. (in Chinese) [12] 王卫星,袁化成,黄国平,等. 抽吸位置对高超声速进气道起动性能的影响[J]. 航空动力学报,2009,24(4): 918-924. WANG Weixing,YUAN Huacheng,HUANG Guoping,et al. Impact of suction position on starting of hypersonic inlet[J]. Journal of Aerospace Power,2009,24(4): 918-924. (in ChineseWANG Weixing, YUAN Huacheng, HUANG Guoping, et al. Impact of suction position on starting of hypersonic inlet[J]. Journal of Aerospace Power, 2009, 24(4): 918-924. (in Chinese) [13] 温玉芬,张晨凯,张正,等. 基于多缝放气自适应流动控制的超声速进气道数值研究[J]. 航空动力学报,2021,36(10): 2017-2028. WEN Yufen,ZHANG Chenkai,ZHANG Zheng,et al. Numerical investigation on adaptive flow-control of supersonic inlet based on air-bleeding multi-slots[J]. Journal of Aerospace Power,2021,36(10): 2017-2028. (in ChineseWEN Yufen, ZHANG Chenkai, ZHANG Zheng, et al. Numerical investigation on adaptive flow-control of supersonic inlet based on air-bleeding multi-slots[J]. Journal of Aerospace Power, 2021, 36(10): 2017-2028. (in Chinese) [14] 翁小侪,郭荣伟. 一种二元定几何混压式超声速进气道流场控制概念研究[J]. 航空动力学报,2012,27(11): 2492-2498. WENG Xiaochai,GUO Rongwei. Study of novel flow control concept for fix-geometry two-dimensional mix-compression supersonic inlet[J]. Journal of Aerospace Power,2012,27(11): 2492-2498. (in ChineseWENG Xiaochai, GUO Rongwei. Study of novel flow control concept for fix-geometry two-dimensional mix-compression supersonic inlet[J]. Journal of Aerospace Power, 2012, 27(11): 2492-2498. (in Chinese) [15] ZHANG Qifan,TAN Huijun,BU Huanxian. Investigation of a movable slot-plate control method for hypersonic inlet unstart caused by downstream mass-flow choking: AIAA 2014-3847[R]. Reston,US: AIAA,2014. [16] 李世珍,唐硕. 高超声速进气道壁面开缝对边界层分离影响研究[J]. 空气动力学学报,2011,29(1): 68-72. LI Shizhen,TANG Shuo. Study on the effect of wall slotting on boundary layer separation in hypersonic inlet[J]. Acta Aerodynamica Sinica,2011,29(1): 68-72. (in ChineseLI Shizhen, TANG Shuo. Study on the effect of wall slotting on boundary layer separation in hypersonic inlet[J]. Acta Aerodynamica Sinica, 2011, 29(1): 68-72. (in Chinese) [17] HÄBERLE J,GULHAN A. Investigation of the performance of a scramjet inlet at Mach 6 with boundary layer bleed: AIAA2006-8139 [R]. Reston,US: AIAA,2006. [18] HAMED A,LEHNIG T. Effect of bleed configuration on shock/laminar boundary-layer interactions[J]. Journal of Propulsion and Power,1995,11(1): 42-48. doi: 10.2514/3.23838 [19] 杜蕊. 火箭发动机变工况条件下冲压主燃区动态特性影响研究[D]. 北京: 北京理工大学,2019. DU Rui. Study on dynamic characteristics of ramjet combustor under the variable working conditions of rocket[D]. Beijing: Beijing Institute of Technology,2019. (in ChineseDU Rui. Study on dynamic characteristics of ramjet combustor under the variable working conditions of rocket[D]. Beijing: Beijing Institute of Technology, 2019. (in Chinese) [20] 冯钦. 固冲发动机进气道补燃室耦合分析[D]. 南京: 南京理工大学,2020. FENG Qin. Coupling analysis between inlet passage and secondary combustion chamber in the solid rocket ramjet[D]. Nanjing: Nanjing University of Science and Technology,2020. (in ChineseFENG Qin. Coupling analysis between inlet passage and secondary combustion chamber in the solid rocket ramjet[D]. Nanjing: Nanjing University of Science and Technology, 2020. (in Chinese) [21] 张浩,李光熙,李江,等. 内置中心支板的RBCC变几何二元进气道设计与数值模拟[J]. 固体火箭技术,2014,37(2): 184-191. ZHANG Hao,LI Guangxi,LI Jiang,et al. Design and numerical simulation of a two-dimensional RBCC variable-geometry inlet with a central strut[J]. Journal of Solid Rocket Technology,2014,37(2): 184-191. (in ChineseZHANG Hao, LI Guangxi, LI Jiang, et al. Design and numerical simulation of a two-dimensional RBCC variable-geometry inlet with a central strut[J]. Journal of Solid Rocket Technology, 2014, 37(2): 184-191. (in Chinese) [22] REINARTZ B U,HERRMANN C D,BALLMANN J,et al. Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment[J]. Journal of Propulsion and Power,2003,19(5): 868-875. doi: 10.2514/2.6177 [23] 赵健. 超声速边界层抽吸孔隙流场结构研究[D]. 长沙: 国防科学技术大学,2016. ZHAO Jian. Research on flowfield structure in supersonic boundary layer bleed holes and slots[D]. Changsha: National University of Defense Technology,2016. (in ChineseZHAO Jian. Research on flowfield structure in supersonic boundary layer bleed holes and slots[D]. Changsha: National University of Defense Technology, 2016. (in Chinese) -