留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双通道内并联式进气道模态转换过程流动特性分析

赵家辉 杨顺华 游进 王宇航 罗佳茂 张千丰

赵家辉, 杨顺华, 游进, 等. 双通道内并联式进气道模态转换过程流动特性分析[J]. 航空动力学报, 2023, 38(1):173-183 doi: 10.13224/j.cnki.jasp.20220519
引用本文: 赵家辉, 杨顺华, 游进, 等. 双通道内并联式进气道模态转换过程流动特性分析[J]. 航空动力学报, 2023, 38(1):173-183 doi: 10.13224/j.cnki.jasp.20220519
ZHAO Jiahui, YANG Shunhua, YOU Jin, et al. Study on flowfield for mode transition of over-under type inlet with double flow path[J]. Journal of Aerospace Power, 2023, 38(1):173-183 doi: 10.13224/j.cnki.jasp.20220519
Citation: ZHAO Jiahui, YANG Shunhua, YOU Jin, et al. Study on flowfield for mode transition of over-under type inlet with double flow path[J]. Journal of Aerospace Power, 2023, 38(1):173-183 doi: 10.13224/j.cnki.jasp.20220519

双通道内并联式进气道模态转换过程流动特性分析

doi: 10.13224/j.cnki.jasp.20220519
详细信息
    作者简介:

    赵家辉(1998-),男,硕士生,研究领域为航空宇航科学与技术

    通讯作者:

    杨顺华(1976-),男,研究员,博士,研究领域为组合动力发动机。E-mail:yang05312022@163.com

  • 中图分类号: V211.48

Study on flowfield for mode transition of over-under type inlet with double flow path

  • 摘要:

    针对双通道内并联式进气道,采用数值模拟方法研究了模态转换过程中分流板高度对抗反压能力及高/低速通道质量流量耦合时的流动特性,得到低速通道工作边界曲线,并使用动网格计算方法验证了其可靠性。结果表明:模态转换过程中随着低速通道反压增大,结尾激波会扰出低速通道并在喉道处周期性振荡,进而影响高/低速通道质量流量分配特性;当结尾激波发生周期性振荡时,反压越大,振荡频率越小,当反压进一步增大时,进气道将出现不起动;随着低速通道关闭程度增大,其抗反压能力减弱,进气道更容易发生不起动。

     

  • 图 1  双通道内并联式进气道模型示意图

    Figure 1.  Schematic of over-under type inlet with double flow path model

    图 2  分流板结构示意图

    Figure 2.  Schematic of splitter plate

    图 3  分流板作动范围

    Figure 3.  Range of motion about the splitter plate

    图 4  计算域与边界条件

    Figure 4.  Computation region and boundary conditions

    图 5  壁面静压分布比对图

    Figure 5.  Comparison of wall static pressure distribution

    图 6  计算流体力学方法验证

    Figure 6.  Verification by computational fluid dynamics method

    图 7  通道出口不同反压条件下马赫数云图

    Figure 7.  Mach number contour maps under different backpressures of two flow paths

    图 8  流量随低速通道出口反压变化示意图

    Figure 8.  Mass flow changes with the increase of backpressure at the low-speed flow path

    图 9  ${{p}}_{\text{l}}$=190 kPa时数值纹影图

    Figure 9.  Numerical schlieren when ${p}_{\text{l}}$=190 kPa

    图 10  ${{p}}_{\text{l}}$=200 kPa时进气道马赫数云图

    Figure 10.  Inlet Mach number contour maps when ${{p}}_{\text{l}}$=200 kPa

    图 11  ${{p}}_{\text{l}}$=200 kPa时流量变化

    Figure 11.  Mass flow changes when ${{p}}_{\text{l}}$=200 kPa

    图 12  不同${{p}}_{\text{l}}$下的数值纹影图(ph=12.5 kPa)

    Figure 12.  Numerical schlieren under different ${{p}}_{\text{l}}$ph=12.5 kPa)

    图 13  测点处动态压力信息

    Figure 13.  Dynamic pressure information at survey points

    图 14  低速通道工作边界曲线

    Figure 14.  Operating boundary curve of low speed flow path

    图 15  不同时刻下进气道马赫数云图

    Figure 15.  Inlet Mach number contour maps at different times

    图 16  流量随分流板高度${{H}}_{\text{sp}}\text{/}{{H}}_{\text{th}}$变化

    Figure 16.  Mass flow changing with height of splitter plate ${{H}}_{\text{sp}}\text{/}{{H}}_{\text{th}}$

    表  1  来流参数

    Table  1.   Conditions of inflow

    参数数值
    飞行高度/km20
    来流马赫数3.5
    T0/K216.65
    p0/Pa5529.31
    下载: 导出CSV

    表  2  低速通道出口参数

    Table  2.   Parameters of low-speed channel outlet

    参数数值
    网格数/105146
    流量/(kg/s)9.74149.82439.8148
    总压恢复系数0.21840.22700.2246
    出口马赫数1.721.691.67
    下载: 导出CSV
  • [1] 向先宏,钱战森,张铁军. TBCC进气道模态转换气动技术研究现状及发展分析[J]. 航空科学技术,2017,28(1): 10-18.

    XIANG Xianhong,QIAN Zhansen,ZHANG Tiejun. An overview of turbine-based combined cycle (TBCC) inlet mode transition aerodynamic technology[J]. Aeronautical Science and Technology,2017,28(1): 10-18. (in Chinese)
    [2] JAMES C M, HARSHA C, CHRISTOPHER P G, et al. US national center for hypersonic combined cycle propulsion: an overview[R]. AIAA-2009-7280, 2009.
    [3] 彭小波. 组合循环动力在天地往返领域的发展与应用[J]. 导弹与航天运载技术,2013(3): 78-82.

    PENG Xiaobo. Development of combined cycle propulsion technology in reusable launch vehicle[J]. Missiles and Space Vehicles,2013(3): 78-82. (in Chinese)
    [4] AUSLENDER A H, SUDER K L. An overview of the NASA FAP hypersonics project airbreathing propulsion research[R]. AIAA-2009-7277, 2009.
    [5] 张航,孙姝,黄河峡,等. 高超声速双模块内转式进气道的流动特性研究: Part I设计状态[J]. 推进技术,2022,43(7): 101-109.

    ZHANG Hang,SUN Shu,HUANG Hexia,et al. Flowfield of hypersonic bimodule inward turning inlet: Part Ⅰ design point[J]. Journal of Propulsion Technology,2022,43(7): 101-109. (in Chinese)
    [6] 黄河峡,谭慧俊,庄逸,等. 高超声速进气道/隔离段内流特性研究进展[J]. 推进技术,2018,39(10): 2252-2273. doi: 10.13675/j.cnki.tjjs.2018.10.010

    HUANG Hexia,TAN Huijun,ZHUANG Yi,et al. Progress in internal flow characteristics of hypersonic inlet/isolator[J]. Journal of Propulsion Technology,2018,39(10): 2252-2273. (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.10.010
    [7] 李茜,桂丰. 国外TBCC发动机进气道设计和试验研究综述[J]. 燃气涡轮试验与研究,2019,32(3): 58-62. doi: 10.3969/j.issn.1672-2620.2019.03.011

    LI Qian,GUI Feng. Design and experimental development overview of foreign TBCC inlet technology[J]. Gas Turbine Experiment and Research,2019,32(3): 58-62. (in Chinese) doi: 10.3969/j.issn.1672-2620.2019.03.011
    [8] 汤华,刘汉斌,张雅凤,等. NASA组合发动机模态转换技术研究[J]. 战术导弹研究,2015(1): 58-63.

    TANG Hua,LIU Hanbin,ZHANG Yafeng,et al. Research on NASA combined cycle engine mode transition[J]. Tactical Missile Technology,2015(1): 58-63. (in Chinese)
    [9] ALBERTSON C W, SAIED E, TREXLER C A. Mach 4 test results of a dual-flowpath, turbine based combined cycle inlet[R]. Canberra, Australia: 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, 2006.
    [10] SANDERS B W, WEIR L J. Aerodynamic design of a dual-flow Mach 7 hypersonic inlet system for a turbine-based combined-cycle hypersonic propulsion system[R]. NASA/CR-2008-215214, 2008.
    [11] STUEBER T J, THOMAS R, VRNAK D R, et al. Dynamic testing of the NASA hypersonic project combined cycle engine testbed for mode transition experiments[R]. NASA/TM-2011-217133, 2011.
    [12] SAUNDERS J D, STUEBER T J, THOMAS S R. Testing of the NASA hypersonic project combined cycle engine large scale inlet mode transition experiment (CCELIMX)[R]. NASA/TM-2012-217217, 2012.
    [13] SLATER J W, SAUNDERS J D. CFD simulation of hypersonic TBCC inlet mode transition[R]. Bermen, Germany: 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, 2009.
    [14] FOSTER L E, SAUNDERS J D, SANDERS B W, et al. Highlights from a Mach 4 experimental demonstration of inlet mode transition for turbine-based combined cycle hypersonic propulsion[R]. NASA/TM-2012-217724, 2012.
    [15] SNYDER C A, ESPINOSA A M. Lessons learned during TBCC design for the NASA AFRL joint system study[R]. NASA/TM-2013-218100, 2013.
    [16] 王超,张悦,谭慧俊,等. 内并联型进气道模态转换过程中流道间干扰特性研究[J]. 推进技术,2022,43(7): 136-145. doi: 10.13675/j.cnki.tjjs.200764

    WANG Chao,ZHANG Yue,TAN Huijun,et al. Interference characteristics between flowpaths during over-under type inlet mode transition[J]. Journal of Propulsion Technology,2022,43(7): 136-145. (in Chinese) doi: 10.13675/j.cnki.tjjs.200764
    [17] 曹石彬. 外并联型TBCC进气道模态转换特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    CAO Shibin. Investigation of over/under TBCC inlet mode transition characteristics[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [18] LYU Ganlin,GAO Zhenxun,QIAN Zhansen,et al. Studies on unsteady mode transition of a turbine based combined cycle (TBCC) inlet with multiple movable panels[J]. Aerospace Science and Technology,2021,111: 1-15.
    [19] 唐琳,孙波. 模态转换时间对模态转换过程的影响[J]. 兵器装备工程学报,2019,40(7): 40-45. doi: 10.11809/bqzbgcxb2019.07.009

    TANG Lin,SUN Bo. Analysis of TBCC dual inlet starting characteristic during mode transition[J]. Journal of Ordnance Equipment Engineering,2019,40(7): 40-45. (in Chinese) doi: 10.11809/bqzbgcxb2019.07.009
    [20] 母忠强,杨顺华,王铁军,等. 双气路内并联进气系统模态转换过程数值研究及验证[J]. 推进技术,2022,43(6): 110-121. doi: 10.13675/j.cnki.tjjs.210115

    MU Zhongqiang,YANG Shunhua,WANG Tiejun,et al. Numerical study and experimental verification on mode transition course of inner over/under inlet system with double flow path[J]. Journal of Propulsion Technology,2022,43(6): 110-121. (in Chinese) doi: 10.13675/j.cnki.tjjs.210115
    [21] 刘君,袁化成,郭荣伟. 内并联式TBCC进气道模态转换过程流动特性分析[J]. 宇航学报,2016,37(4): 95-103.

    LIU Jun,YUAN Huacheng,GUO Rongwei. Analysis of over/under TBCC inlet mode transition flow characteristic[J]. Journal of Astronautics,2016,37(4): 95-103. (in Chinese)
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  196
  • HTML浏览量:  45
  • PDF量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 网络出版日期:  2022-12-13

目录

    /

    返回文章
    返回