留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多体动力学的中介轴承局部缺陷故障振动特性分析

田晶 艾辛平 张凤玲 王志 汪才

田晶, 艾辛平, 张凤玲, 等. 基于多体动力学的中介轴承局部缺陷故障振动特性分析[J]. 航空动力学报, 2024, 39(8):20220521 doi: 10.13224/j.cnki.jasp.20220521
引用本文: 田晶, 艾辛平, 张凤玲, 等. 基于多体动力学的中介轴承局部缺陷故障振动特性分析[J]. 航空动力学报, 2024, 39(8):20220521 doi: 10.13224/j.cnki.jasp.20220521
TIAN Jing, AI Xinping, ZHANG Fengling, et al. Analysis of vibration characteristics of inter-shaft bearing with local defects based on multi-body dynamics[J]. Journal of Aerospace Power, 2024, 39(8):20220521 doi: 10.13224/j.cnki.jasp.20220521
Citation: TIAN Jing, AI Xinping, ZHANG Fengling, et al. Analysis of vibration characteristics of inter-shaft bearing with local defects based on multi-body dynamics[J]. Journal of Aerospace Power, 2024, 39(8):20220521 doi: 10.13224/j.cnki.jasp.20220521

基于多体动力学的中介轴承局部缺陷故障振动特性分析

doi: 10.13224/j.cnki.jasp.20220521
基金项目: 国家自然科学基金(12172231); 辽宁省博士科研启动基金(2020-BS-174); 辽宁省教育厅项目(JYT2020019)
详细信息
    作者简介:

    田晶(1987-),男,教授、硕士生导师,博士,研究领域为航空发动机强度、振动及可靠性。E-mail:jingtian@sau.edu.cn

    通讯作者:

    艾辛平(1998-),女,硕士生,研究领域为轴承故障诊断。E-mail:axp2a7q1@163.com

  • 中图分类号: V232

Analysis of vibration characteristics of inter-shaft bearing with local defects based on multi-body dynamics

  • 摘要:

    为研究中介轴承存在局部缺陷时的振动特性及接触应力,基于多体动力学方法建立了中介轴承单点及复合故障二维全柔性动力学模型。应用该模型分析了中介轴承存在局部缺陷时的时频分布特性及接触应力变化规律,并与基于非线性Hertz接触理论的集中参数模型和实验测试结果进行对比分析,验证了多体动力学模型的准确性。研究结果表明:依据所建模型求得的故障特征频率与集中参数模型和实验结果误差均小于1%。轴承的等效应力最大值出现在故障裂痕处,且向四周扩散并减小;轴承承载区内的应力明显高于非承载区,应力变化的时间间隔为中介轴承故障特征频率基频的倒数。

     

  • 图 1  中介轴承二维非线性模型

    Figure 1.  Two dimensional nonlinear model of inter-shaft bearing

    图 2  径向载荷区域示意图

    Figure 2.  Schematic diagram of radial load area

    图 3  模型径向位移示意图

    Figure 3.  Schematic diagram of radial displacement of model

    图 4  中介轴承实验台

    Figure 4.  Inter-shaft bearing test bench

    图 5  加速度传感器布置示意图

    Figure 5.  Schematic diagram of acceleration sensor layout

    图 6  各部件节点径向位移-时间图

    Figure 6.  Radial displacement-time diagram of each component node

    图 7  保持架、滚子的径向位移-时间图

    Figure 7.  Radial displacement-time diagram of cage and rollers

    图 8  内圈单点故障3种模型时域图及包络谱图

    Figure 8.  Time domain diagram and envelope spectrum of three models of inner ring single point fault

    图 9  外圈单点故障3种模型时域图及包络谱图

    Figure 9.  Time domain diagram and envelope spectrum of three models of outer ring single point fault

    图 10  复合故障3种模型时域图及包络谱图

    Figure 10.  Time domain diagram and envelope spectrum of three models of compound fault

    图 11  中介轴承内圈缺陷处等效接触应力云图

    Figure 11.  Effective contact stress diagram of inner ring defect of inter-shaft bearing

    图 12  中介轴承外圈缺陷处等效接触应力云图

    Figure 12.  Effective contact stress diagram of outer ring defect of inter-shaft bearing

    图 13  复合故障内圈单元等效接触应力变化曲线

    Figure 13.  Effective contact stress variation curve of inner ring element with compound fault

    图 14  复合故障外圈单元等效接触应力变化曲线

    Figure 14.  Effective contact stress variation curve of outer ring element with compound fault

    图 15  复合故障内圈单元等效接触应力包络谱图

    Figure 15.  Effective contact stress envelope spectrum of inner ring element with compound fault

    图 16  复合故障外圈单元等效接触应力包络谱图

    Figure 16.  Effective contact stress envelope spectrum of outer ring element with compound fault

    表  1  中介轴承模型参数

    Table  1.   Inter-shaft bearing model parameters

    参数数值
    内圈直径/mm15
    外圈直径/mm35
    节圆直径/mm25
    滚子直径/mm5
    滚子数目11
    接触角/(°)0
    径向间隙/μm12
    结构阻尼系数/(N·s/m)300
    下载: 导出CSV

    表  2  各部件材料参数

    Table  2.   Material parameters of each component

    轴承元件密度/
    (kg/m3
    泊松比弹性模量/
    MPa
    内圈、外圈、滚子78300.3206
    保持架85000.324105
    下载: 导出CSV

    表  3  轴承接触对系数

    Table  3.   Bearing contact pair coefficient

    接触部件 接触类型 $ {F_{\text{s}}} $ $ {F_{\text{d}}} $
    内圈与滚子 面-面(自动ASTS) 0.1 0.05
    外圈与滚子 面-面(自动ASTS) 0.1 0.05
    保持架与滚子 面-面(自动ASTS) 0.05 0.02
    下载: 导出CSV

    表  4  中介轴承理论故障特征频率

    Table  4.   Characteristic frequency of theoretical failure of inter-shaft bearing

    参数 故障类型
    外圈故障 内圈故障
    特征频率/Hz 80.67 121
    下载: 导出CSV
  • [1] TANDON N,CHOUDHURY A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings[J]. Tribology International,1999,32(8): 469-480. doi: 10.1016/S0301-679X(99)00077-8
    [2] JONES A B. Ball motion and sliding friction in ball bearings[J]. Journal of Basic Engineering,1959,81(1): 1-12. doi: 10.1115/1.4008346
    [3] JONES A B. A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions[J]. Wear,1960,3(6): 484.
    [4] GUPTA P K,PAUL B. Advanced dynamics of rolling elements[J]. Journal of Applied Mechanics,1986,53(3): 731-732.
    [5] GUPTA P K. On the geometrical imperfections in cylindrical roller bearings[J]. Journal of Tribology,1988,110(1): 13-18. doi: 10.1115/1.3261553
    [6] PATIL M S,MATHEW J,RAJENDRAKUMAR P K,et al. A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing[J]. International Journal of Mechanical Sciences,2010,52(9): 1193-1201. doi: 10.1016/j.ijmecsci.2010.05.005
    [7] LIU Jing. A dynamic modelling method of a rotor-roller bearing-housing system with a localized fault including the additional excitation zone[J]. Journal of Sound and Vibration,2020,469: 115144. doi: 10.1016/j.jsv.2019.115144
    [8] 陈果. 含复杂滚动轴承建模的航空发动机整机振动耦合动力学模型[J]. 航空动力学报,2017,32(9): 2193-2204. CHEN Guo. Whole aero-engine vibration coupling dynamics model including modeling of complex ball and roller bearings[J]. Journal of Aerospace Power,2017,32(9): 2193-2204. (in Chinese

    CHEN Guo. Whole aero-engine vibration coupling dynamics model including modeling of complex ball and roller bearings[J]. Journal of Aerospace Power, 2017, 32(9): 2193-2204. (in Chinese)
    [9] CHEN Aoyu,KURFESS T R. A new model for rolling element bearing defect size estimation[J]. Measurement,2018,114: 144-149. doi: 10.1016/j.measurement.2017.09.018
    [10] 徐可君,董芳华,秦海勤. 内圈带缺陷中介轴承的动力学建模与振动响应分析[J]. 海军航空工程学院学报,2015,30(1): 36-42. XU Kejun,DONG Fanghua,QIN Haiqin. Dynamics model and vibration response analysis of defect inner ring of intershaft bearing[J]. Journal of Naval Aeronautical and Astronautical University,2015,30(1): 36-42. (in Chinese

    XU Kejun, DONG Fanghua, QIN Haiqin. Dynamics model and vibration response analysis of defect inner ring of intershaft bearing[J]. Journal of Naval Aeronautical and Astronautical University, 2015, 30(1): 36-42. (in Chinese)
    [11] 田晶,王志,张凤玲,等. 中介轴承外圈故障动力学建模及仿真分析[J]. 推进技术,2019,40(3): 660-666. TIAN Jing,WANG Zhi,ZHANG Fengling,et al. Dynamic modeling and simulation analysis on outer race fault of inter-shaft bearing[J]. Journal of Propulsion Technology,2019,40(3): 660-666. (in Chinese

    TIAN Jing, WANG Zhi, ZHANG Fengling, et al. Dynamic modeling and simulation analysis on outer race fault of inter-shaft bearing[J]. Journal of Propulsion Technology, 2019, 40(3): 660-666. (in Chinese)
    [12] 贾丰瑞,张保强,冯吴俊,等. 基于谐振器激励的轴承故障动力学建模研究[J]. 应用力学学报,2022,39(3): 482-489,497. JIA Fengrui,ZHANG Baoqiang,FENG Wujun,et al. Dynamic modeling method of bearing fault based on resonance changer excitation[J]. Chinese Journal of Applied Mechanics,2022,39(3): 482-489,497. (in Chinese

    JIA Fengrui, ZHANG Baoqiang, FENG Wujun, et al. Dynamic modeling method of bearing fault based on resonance changer excitation[J]. Chinese Journal of Applied Mechanics, 2022, 39(3): 482-489, 497. (in Chinese)
    [13] MCFADDEN P D,SMITH J D. Model for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of Sound and Vibration,1984,96(1): 69-82. doi: 10.1016/0022-460X(84)90595-9
    [14] ZHAO Hua. Analysis of load distributions within solid and hollow roller bearings[J]. Journal of Tribology,1998,120(1): 134-139. doi: 10.1115/1.2834176
    [15] KUNC R,PREBIL I. Numerical determination of carrying capacity of large rolling bearings[J]. Journal of Materials Processing Technology,2004,155/156: 1696-1703. doi: 10.1016/j.jmatprotec.2004.04.125
    [16] 李国超,彭炜,李勇才,等. 滚动轴承外圈故障的显式有限元动态仿真分析[J]. 中国机械工程,2012,23(23): 2825-2829. LI Guochao,PENG Wei,LI Yongcai,et al. Simulation and dynamic analysis of outer ring fault on rolling bearings using explicit finite element method[J]. China Mechanical Engineering,2012,23(23): 2825-2829. (in Chinese

    LI Guochao, PENG Wei, LI Yongcai, et al. Simulation and dynamic analysis of outer ring fault on rolling bearings using explicit finite element method[J]. China Mechanical Engineering, 2012, 23(23): 2825-2829. (in Chinese)
    [17] SINGH S,KÖPKE U G,HOWARD C Q,et al. Analyses of contact forces and vibration response for a defective rolling element bearing using an explicit dynamics finite element model[J]. Journal of Sound and Vibration,2014,333(21): 5356-5377. doi: 10.1016/j.jsv.2014.05.011
    [18] 杨子臻,左彦飞,邵化金,等. 基于显式有限元的转子不平衡与轴承故障耦合分析[J]. 轴承,2021(2): 8-13,16. YANG Zizhen,ZUO Yanfei,SHAO Huajin,et al. Analysis on coupling between rotor unbalance and bearing fault based on explicit finite element[J]. Bearing,2021(2): 8-13,16. (in Chinese

    YANG Zizhen, ZUO Yanfei, SHAO Huajin, et al. Analysis on coupling between rotor unbalance and bearing fault based on explicit finite element[J]. Bearing, 2021(2): 8-13, 16. (in Chinese)
    [19] 涂文兵,杨本梦,杨锦雯,等. 考虑滚动轴承故障处塑性变形的有限元建模与动力学特性分析[J]. 西安交通大学学报,2022,56(5): 85-94. TU Wenbing,YANG Benmeng,YANG Jinwen,et al. Finite element modeling and dynamic characteristics analysis with plastic deformation at rolling bearing failure considered[J]. Journal of Xi’an Jiaotong University,2022,56(5): 85-94. (in Chinese

    TU Wenbing, YANG Benmeng, YANG Jinwen, et al. Finite element modeling and dynamic characteristics analysis with plastic deformation at rolling bearing failure considered[J]. Journal of Xi’an Jiaotong University, 2022, 56(5): 85-94. (in Chinese)
    [20] 丁东升,刘永强,杨绍普. 外圈滚道剥离故障对滚动轴承动力学响应的影响分析[J]. 振动与冲击,2022,41(8): 141-148,216. DING Dongsheng,LIU Yongqiang,YANG Shaopu. Analysis of the influence of outer ring raceway peeling fault on the dynamic response of a rolling bearing[J]. Journal of Vibration and Shock,2022,41(8): 141-148,216. (in Chinese

    DING Dongsheng, LIU Yongqiang, YANG Shaopu. Analysis of the influence of outer ring raceway peeling fault on the dynamic response of a rolling bearing[J]. Journal of Vibration and Shock, 2022, 41(8): 141-148, 216. (in Chinese)
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  19
  • HTML浏览量:  16
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 网络出版日期:  2023-12-26

目录

    /

    返回文章
    返回