留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

虑及谐波耦合的对转桨扇不平衡辨识方法

龙昱达 陈立芳

龙昱达, 陈立芳. 虑及谐波耦合的对转桨扇不平衡辨识方法[J]. 航空动力学报, 2024, 39(8):20220533 doi: 10.13224/j.cnki.jasp.20220533
引用本文: 龙昱达, 陈立芳. 虑及谐波耦合的对转桨扇不平衡辨识方法[J]. 航空动力学报, 2024, 39(8):20220533 doi: 10.13224/j.cnki.jasp.20220533
LONG Yuda, CHEN Lifang. Unbalanced identification method of counter rotating propeller fan considering harmonic coupling[J]. Journal of Aerospace Power, 2024, 39(8):20220533 doi: 10.13224/j.cnki.jasp.20220533
Citation: LONG Yuda, CHEN Lifang. Unbalanced identification method of counter rotating propeller fan considering harmonic coupling[J]. Journal of Aerospace Power, 2024, 39(8):20220533 doi: 10.13224/j.cnki.jasp.20220533

虑及谐波耦合的对转桨扇不平衡辨识方法

doi: 10.13224/j.cnki.jasp.20220533
基金项目: 国家自然科学基金(51775030,91860126)
详细信息
    作者简介:

    龙昱达(1997-),男,硕士,主要研究方向为旋转机械振动测试及动平衡技术

    通讯作者:

    陈立芳(1973-),女,教授,博士,主要研究方向为旋转机械主动平衡技术。E-mail:chenlf@mail.buct.edu.cn

  • 中图分类号: V231.92

Unbalanced identification method of counter rotating propeller fan considering harmonic coupling

  • 摘要:

    对转桨扇双螺旋桨转子系统中,振动信号经中介轴承在内、外转子间相互传递,产生复杂的耦合振动,通常表现为基频、倍频的拍振形式,造成振动信号辨识困难、动平衡效率低。传统最小二乘辨识方法仅考虑了基频信号,未虑及谐波及噪声的干扰,导致辨识精确度低。为解决该问题,提出一种虑及谐波信号的最小二乘法(HLSM),通过仿真实验对比了多种辨识方法与HLSM的辨识效果,验证HLSM的辨识精确度更高。在搭建的同轴对转双转子实验台上应用HLSM辨识结果进行双转子动平衡,结果显示内、外转子不平衡振动分别降低70%与96%。

     

  • 图 1  对转桨扇发动机结构

    Figure 1.  Structure of counter rotating propeller fan engine

    图 2  耦合振动的拍振

    Figure 2.  Beat of coupled vibration

    图 3  内、外转子振动耦合机理

    Figure 3.  Vibration coupling mechanism of inner and outer rotors

    图 4  基频-基频耦合信号时域图

    Figure 4.  Time domain diagram of BBC signal

    图 5  基频-基频耦合时的外转子基频幅值辨识结果比较

    Figure 5.  Comparison of identification results of fundamental frequency amplitude of outer rotor in case of BBC

    图 6  基频-基频耦合时的内转子基频幅值辨识结果比较

    Figure 6.  Comparison of identification results of fundamental frequency amplitude of inner rotor in case of BBC

    图 7  不同转速差下内转子不平衡响应幅值的辨识误差比较

    Figure 7.  Comparison of identification errors for inner rotor unbalance response amplitude under different speed differences

    图 8  不同转速差下外转子不平衡响应幅值的辨识误差比较

    Figure 8.  Comparison of identification errors for outer rotor unbalance response amplitude under different speed differences

    图 9  基频-2倍频耦合信号时域图

    Figure 9.  Time domain diagram of BHC signal

    图 10  基频-2倍频耦合时的外转子基频幅值辨识结果比较

    Figure 10.  Comparison of identification results of fundamental frequency amplitude of outer rotor in case of BHC

    图 11  基频-2倍频耦合时的内转子基频幅值辨识结果比较

    Figure 11.  Comparison of identification results of fundamental frequency amplitude of inner rotor in case of BHC

    图 12  同轴对转式双转子实验台结构图

    Figure 12.  Structure diagram of coaxial counter rotating double rotor test bench

    图 13  双转子实验台测振点位示意图

    Figure 13.  Schematic diagram of vibration measurement points of double rotor test bench

    图 14  内/外转子转速为2 000/1 994 r/min的振动时域图

    Figure 14.  Time domain diagram of vibration of inner/outer rotor speed at 2 000/1 994 r/min

    图 15  内/外转子转速为2 000/1 994 r/min时辨识结果比较

    Figure 15.  Comparison of identification results when the inner/outer rotor speed is 2 000/1 994 r/min

    图 16  内/外转子转速为1500/3006 r/min的振动时域图

    Figure 16.  Time domain diagram of vibration of inner/outer rotor speed at 1500/3006 r/min

    图 17  内/外转子转速为1500/3006 r/min时辨识结果比较

    Figure 17.  Comparison of identification results when the inner/outer rotor speed is 1500/3006 r/min

    图 18  对转双转子动平衡步骤

    Figure 18.  Dynamic balancing steps of counter rotating double rotor

    图 19  内转子振动信号动平衡前后对比

    Figure 19.  Comparison of vibration signal of inner rotor before and after dynamic balancing

    图 20  外转子振动信号动平衡前后对比

    Figure 20.  Comparison of vibration signal of outer rotor before and after dynamic balancing

    表  1  解耦后的各振动响应

    Table  1.   Vibration response after decoupling

    时间 内转子不平衡响应 内转子不平衡传递 外转子不平衡响应 外转子不平衡传递
    幅值/μm 角度/(°) 幅值/μm 角度/(°) 幅值/μm 角度/(°) 幅值/μm 角度/(°)
    初始不平衡振动 48.59 165.33 7.67 162.71 20.50 319.48 92.47 319.17
    外转子试重后 51.91 167.16 8.78 169.18 27.58 272.03 127.0 276.87
    外转子平衡,内转子试重后 43.45 201.49 7.97 174.74 1.13 132.27 6.30 242.96
    双转子平衡后 14.34 56.74 4.81 252.93 0.91 129.95 5.87 249.18
    下载: 导出CSV

    表  2  内、外转子的配重情况

    Table  2.   Compensation weights of inner and outer rotors

    位置 构造初始不平衡量 试重 配重
    质量/g 角度/(°) 质量/g 角度/(°) 质量/g 角度/(°)
    内转子 27 90 27 0 45 60
    外转子 57 120 57 30 57 −60
    下载: 导出CSV

    表  3  内、外转子动平衡后振动幅值降振比

    Table  3.   Vibration reduction ratio of each vibration amplitude after dynamic balancing

    项目降振比/%
    内转子不平衡响应70
    内转子不平衡传递36
    外转子不平衡响应96
    外转子不平衡传递94
    内转子RMS83
    外转子RMS76
    下载: 导出CSV
  • [1] NALIANDA D K,KYPRIANIDIS K G,SETHI V,et al. Techno-economic viability assessments of greener propulsion technology under potential environmental regulatory policy scenarios[J]. Applied Energy,2015,157: 35-50. doi: 10.1016/j.apenergy.2015.07.017
    [2] VAN ZANTE D E,COLLIER F,ORTON A,et al. Progress in open rotor propulsors: the FAA/GE/NASA open rotor test campaign[J]. The Aeronautical Journal,2014,118(1208): 1181-1213. doi: 10.1017/S0001924000009842
    [3] 周莉,是介,王占学. 开式转子发动机研究进展[J]. 推进技术,2019,40(9): 1921-1932. ZHOU Li,SHI Jie,WANG Zhanxue. Research progress in open rotor engine[J]. Journal of Propulsion Technology,2019,40(9): 1921-1932. (in Chinese

    ZHOU Li, SHI Jie, WANG Zhanxue. Research progress in open rotor engine[J]. Journal of Propulsion Technology, 2019, 40(9): 1921-1932. (in Chinese)
    [4] 马平平. 航空发动机双转子系统振动特性研究[D]. 大连: 大连理工大学,2021. MA Pingping. Vibration analysis of the dual-rotor system for aeroengine[D]. Dalian: Dalian University of Technology,2021. (in Chinese

    MA Pingping. Vibration analysis of the dual-rotor system for aeroengine[D]. Dalian: Dalian University of Technology, 2021. (in Chinese)
    [5] 陈立芳,王维民,高金吉. 航空发动机自动平衡技术发展综述[J]. 航空动力学报,2019,34(7): 1530-1541. CHEN Lifang,WANG Weimin,GAO Jinji. Summary on the development of auto-balancing technology of aero-engine[J]. Journal of Aerospace Power,2019,34(7): 1530-1541. (in Chinese

    CHEN Lifang, WANG Weimin, GAO Jinji. Summary on the development of auto-balancing technology of aero-engine[J]. Journal of Aerospace Power, 2019, 34(7): 1530-1541. (in Chinese)
    [6] 康瑞元,陈玉春,蔡飞超,等. 齿轮传动对转桨扇发动机总体性能建模[J]. 推进技术,2019,40(11): 2428-2435. KANG Ruiyuan,CHEN Yuchun,CAI Feichao,et al. Performance modelling of geared contra-rotating propfan engine[J]. Journal of Propulsion Technology,2019,40(11): 2428-2435. (in Chinese

    KANG Ruiyuan, CHEN Yuchun, CAI Feichao, et al. Performance modelling of geared contra-rotating propfan engine[J]. Journal of Propulsion Technology, 2019, 40(11): 2428-2435. (in Chinese)
    [7] 王逸维,黄向华. 拉力式对转桨扇发动机的建模与性能评估[J]. 推进技术,2018,39(2): 241-250. WANG Yiwei,HUANG Xianghua. Modeling and assessment of a contra-rotating puller propfan engine[J]. Journal of Propulsion Technology,2018,39(2): 241-250. (in Chinese

    WANG Yiwei, HUANG Xianghua. Modeling and assessment of a contra-rotating puller propfan engine[J]. Journal of Propulsion Technology, 2018, 39(2): 241-250. (in Chinese)
    [8] 石万凯,刘敬,龚建春. 同轴对转行星齿轮传动系统动态特性分析[J]. 振动与冲击,2014,33(7): 99-104. SHI Wankai,LIU Jing,GONG Jianchun. Dynamic characteristics analysis for a co-axial counter-rotating planetary gear transmission system[J]. Journal of Vibration and Shock,2014,33(7): 99-104. (in Chinese

    SHI Wankai, LIU Jing, GONG Jianchun. Dynamic characteristics analysis for a co-axial counter-rotating planetary gear transmission system[J]. Journal of Vibration and Shock, 2014, 33(7): 99-104. (in Chinese)
    [9] 唐振寰,米栋,卢愈,等. 轴承共腔-双转子系统耦合振动特性研究[J]. 推进技术,2022,43(2): 246-255. TANG Zhenhuan,MI Dong,LU Yu,et al. Coupling vibration characteristics for shared bearing bore-coaxial rotor system[J]. Journal of Propulsion Technology,2022,43(2): 246-255. (in Chinese

    TANG Zhenhuan, MI Dong, LU Yu, et al. Coupling vibration characteristics for shared bearing bore-coaxial rotor system[J]. Journal of Propulsion Technology, 2022, 43(2): 246-255. (in Chinese)
    [10] 章健,张大义,王永锋,等. 共用支承-转子结构系统振动耦合特性分析[J]. 北京航空航天大学学报,2019,45(9): 1902-1910. ZHANG Jian,ZHANG Dayi,WANG Yongfeng,et al. Coupling vibration characteristics analysis of shared support-rotors system[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(9): 1902-1910. (in Chinese

    ZHANG Jian, ZHANG Dayi, WANG Yongfeng, et al. Coupling vibration characteristics analysis of shared support-rotors system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1902-1910. (in Chinese)
    [11] 马英群. 基于结构声强可视化的航空发动机转子-支承-机匣耦合系统振动能量传递特性研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所),2020. MA Yingqun. Investigation on vibration energy transmission characteristics of aero-engine rotor-support-casing coupling system based on visualization of structural acoustic intensity[D]. Beijing: Institute of Engineering Thermophysics,Chinese Academy of Sciences,2020. (in Chinese

    MA Yingqun. Investigation on vibration energy transmission characteristics of aero-engine rotor-support-casing coupling system based on visualization of structural acoustic intensity[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2020. (in Chinese)
    [12] 雷冰龙,李超,何康,等. 共用支承-转子系统耦合振动分析及试验[J]. 航空动力学报,2020,35(11): 2293-2305. LEI Binglong,LI Chao,HE Kang,et al. Coupling vibration characteristics analysis and experiment of shared support-rotors system[J]. Journal of Aerospace Power,2020,35(11): 2293-2305. (in Chinese

    LEI Binglong, LI Chao, HE Kang, et al. Coupling vibration characteristics analysis and experiment of shared support-rotors system[J]. Journal of Aerospace Power, 2020, 35(11): 2293-2305. (in Chinese)
    [13] 杨喜关,罗贵火,唐振寰,等. 高维反向旋转双转子系统的建模方法及动力特性[J]. 航空动力学报,2014,29(3): 585-595. YANG Xiguan,LUO Guihuo,TANG Zhenhuan,et al. Modeling method and dynamic characteristics of high-dimensional counter-rotating dual rotor system[J]. Journal of Aerospace Power,2014,29(3): 585-595. (in Chinese

    YANG Xiguan, LUO Guihuo, TANG Zhenhuan, et al. Modeling method and dynamic characteristics of high-dimensional counter-rotating dual rotor system[J]. Journal of Aerospace Power, 2014, 29(3): 585-595. (in Chinese)
    [14] WANG Nanfei,JIANG Dongxiang. Vibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: theoretical analysis and experimental study[J]. Mechanism and Machine Theory,2018,125: 207-219. doi: 10.1016/j.mechmachtheory.2018.03.009
    [15] YI Haiming,HOU Lei,GAO Peng,et al. Nonlinear resonance characteristics of a dual-rotor system with a local defect on the inner ring of the inter-shaft bearing[J]. Chinese Journal of Aeronautics,2021,34(12): 110-124. doi: 10.1016/j.cja.2020.11.014
    [16] LIU Jun,WANG Chang,LUO Zhiwei. Research nonlinear vibrations of a dual-rotor system with nonlinear restoring forces[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2020,42(9): 461. doi: 10.1007/s40430-020-02541-w
    [17] PONCI L P,CRECI G,MENEZES J C. Simplified procedure for vibration analysis and dynamic balancing in mechanical systems with beats frequency[J]. Measurement,2021,174: 109056. doi: 10.1016/j.measurement.2021.109056
    [18] ZHANG Z X,ZHANG Q,LI X L,et al. The whole-beat correlation method for the identification of an unbalance response of a dual-rotor system with a slight rotating speed difference[J]. Mechanical Systems and Signal Processing,2011,25(5): 1667-1673. doi: 10.1016/j.ymssp.2010.12.001
    [19] ZHANG Z X,WANG L Z,JIN Z J,et al. Non-whole beat correlation method for the identification of an unbalance response of a dual-rotor system with a slight rotating speed difference[J]. Mechanical Systems and Signal Processing,2013,39(1/2): 452-460.
    [20] 李传江,张自强,费敏锐,等. 微速差双转子系统不平衡信号提取方法[J]. 振动与冲击,2013,32(14): 29-33. LI Chuanjiang,ZHANG Ziqiang,FEI Minrui,et al. Extraction method for unbalanced signal in a dual-rotor system with little rotating speed difference[J]. Journal of Vibration and Shock,2013,32(14): 29-33. (in Chinese doi: 10.3969/j.issn.1000-3835.2013.14.005

    LI Chuanjiang, ZHANG Ziqiang, FEI Minrui, et al. Extraction method for unbalanced signal in a dual-rotor system with little rotating speed difference[J]. Journal of Vibration and Shock, 2013, 32(14): 29-33. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.14.005
    [21] 李杰,曹树谦,郭虎伦,等. 机动飞行条件下双转子系统动力学建模与响应分析[J]. 航空动力学报,2017,32(4): 835-849. LI Jie,CAO Shuqian,GUO Hulun,et al. Modeling and response analysis of dual-rotor system under maneuvering flight[J]. Journal of Aerospace Power,2017,32(4): 835-849. (in Chinese

    LI Jie, CAO Shuqian, GUO Hulun, et al. Modeling and response analysis of dual-rotor system under maneuvering flight[J]. Journal of Aerospace Power, 2017, 32(4): 835-849. (in Chinese)
    [22] 张天程,曹树谦,李利青,等. 碰摩双转子系统弯扭耦合振动分析与实验[J]. 航空动力学报,2019,34(3): 643-655. ZHANG Tiancheng,CAO Shuqian,LI Liqing,et al. Analysis and experiment of coupled bending and torsional vibration of a rub-impact dual-rotor system[J]. Journal of Aerospace Power,2019,34(3): 643-655. (in Chinese

    ZHANG Tiancheng, CAO Shuqian, LI Liqing, et al. Analysis and experiment of coupled bending and torsional vibration of a rub-impact dual-rotor system[J]. Journal of Aerospace Power, 2019, 34(3): 643-655. (in Chinese)
    [23] 王飞,罗贵火,崔海涛. 转速比对双转子系统非线性动力学特性影响[J]. 南京航空航天大学学报,2018,50(3): 367-374. WANG Fei,LUO Guihuo,CUI Haitao. Influence of speed ratio on nonlinear dynamic characteristics for dual rotor system[J]. Journal of Nanjing University of Aeronautics & Astronautics,2018,50(3): 367-374. (in Chinese

    WANG Fei, LUO Guihuo, CUI Haitao. Influence of speed ratio on nonlinear dynamic characteristics for dual rotor system[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(3): 367-374. (in Chinese)
    [24] 陈曦,廖明夫,张霞妹,等. 大涵道比涡扇发动机低压转子现场动平衡技术[J]. 航空动力学报,2017,32(4): 808-819. CHEN Xi,LIAO Mingfu,ZHANG Xiamei,et al. Field balancing technology for low pressure rotors of high bypass ratio turbofan engines[J]. Journal of Aerospace Power,2017,32(4): 808-819. (in Chinese

    CHEN Xi, LIAO Mingfu, ZHANG Xiamei, et al. Field balancing technology for low pressure rotors of high bypass ratio turbofan engines[J]. Journal of Aerospace Power, 2017, 32(4): 808-819. (in Chinese)
    [25] ZHANG Zhixin,ZHANG Chuanyi,WAN Keda,et al. An improved whole-machine balancing method based on double auto-correlation measurement[J]. Proceedings of the Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science,2018,232(4): 612-620.
    [26] ZHANG Zhixin,WAN Keda,LI Junfang,et al. Synchronization identification method for unbalance of dual-rotor system[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2018,40(4): 241. doi: 10.1007/s40430-018-1133-5
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  39
  • HTML浏览量:  16
  • PDF量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-23
  • 网络出版日期:  2024-01-16

目录

    /

    返回文章
    返回