留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

60 m3卧式液氮贮罐预冷过程试验

张青 苑文豪 郑艳 李朋虎 夏明波 何国庚 陈建业

张青, 苑文豪, 郑艳, 等. 60 m3卧式液氮贮罐预冷过程试验[J]. 航空动力学报, 2023, 38(1):86-93 doi: 10.13224/j.cnki.jasp.20220542
引用本文: 张青, 苑文豪, 郑艳, 等. 60 m3卧式液氮贮罐预冷过程试验[J]. 航空动力学报, 2023, 38(1):86-93 doi: 10.13224/j.cnki.jasp.20220542
ZHANG Qing, YUAN Wenhao, ZHENG Yan, et al. Experimental on chilldown performance of 60 m3 horizontal storage tank with liquid nitrogen[J]. Journal of Aerospace Power, 2023, 38(1):86-93 doi: 10.13224/j.cnki.jasp.20220542
Citation: ZHANG Qing, YUAN Wenhao, ZHENG Yan, et al. Experimental on chilldown performance of 60 m3 horizontal storage tank with liquid nitrogen[J]. Journal of Aerospace Power, 2023, 38(1):86-93 doi: 10.13224/j.cnki.jasp.20220542

60 m3卧式液氮贮罐预冷过程试验

doi: 10.13224/j.cnki.jasp.20220542
基金项目: 国家自然科学基金(52276009)
详细信息
    作者简介:

    张青(1979-),男,高级工程师,硕士,主要从事低温推进剂应用

    通讯作者:

    陈建业(1989-),男,副教授,博士,主要从事低温气液两相流研究。E-mail:jianye_chen@hust.edu.cn

  • 中图分类号: V511;TB658

Experimental on chilldown performance of 60 m3 horizontal storage tank with liquid nitrogen

  • 摘要:

    为进一步了解大型卧罐预冷过程,搭建了60 m3卧式液氮贮罐预冷试验台,对小流量下贮罐预冷过程的降温和罐体应变特性开展了研究。结果表明:预冷过程罐内气体温度首先整体迅速降低,然后缓慢下降,且呈现分层现象;预冷初期液氮在罐底难以积累;靠近底部的罐壁降温过程分为三个阶段,首先与低温氮气进行自然对流传热,温度缓慢下降,液位增长到相应高度后与液氮进行沸腾换热从而温度迅速下降,最后稳定在液氮温度;对于最终液位以上的罐壁,一直维持着平稳的降温速率;贮罐轴向应变全为负值,随着预冷过程进行轴向应变随之增大,与液氮接触的局部罐壁轴向应变会迅速增加。该项试验的成功进行有力地补充了国内大型卧罐预冷试验数据的空白,为低温贮罐可靠性及寿命预测等相关研究提供数据支撑。

     

  • 图 1  试验系统示意图

    1 压力传感器;2 常温截止阀;3 低温贮罐;4 雷达液位计;5 低温消声器;6、7 低温截止阀;8 低温过滤器。

    Figure 1.  Schematic diagram of experimental system

    图 2  多点支撑结构示意图(单位:mm)

    Figure 2.  Schematic diagram of multi-point support structure (unit:mm)

    图 3  进液口和排气口示意图(单位:mm)

    Figure 3.  Schematic diagram of liquid inlet and exhaust port (unit:mm)

    图 4  内部中间截面温度传感器分布(单位:mm)

    Figure 4.  Distribution of temperature sensors in the intermediate section (unit:mm)

    图 5  罐壁传感器分布(单位:mm)

    Figure 5.  Distribution of temperature sensors on the tank wall (unit:mm)

    图 6  预冷试验系统数据采集界面

    Figure 6.  Data logging interface of the chilldown experimental system

    图 7  预冷过程流量监测

    Figure 7.  Flow monitoring during chilldown process

    图 8  液氮液位及气枕压力变化曲线

    Figure 8.  Change curve of liquid level of liquid nitrogen and gas pressure

    图 9  中间截面流体温度变化曲线

    Figure 9.  Change curve of fluid temperature on the internal intermediate section

    图 10  不同时刻t流体温度沿高度分布

    Figure 10.  Distribution of fluid temperature along the height at different moments t

    图 11  A-A截面罐壁温度变化曲线

    Figure 11.  Temperature change curve of tank wall in A-A section

    图 12  左封头罐壁温度变化曲线

    Figure 12.  Temperature change curve of tank wall on the left head

    图 13  A-A截面与左封头罐壁温度对比

    Figure 13.  Comparison of temperature of tank wall between A-A section and left head

    图 14  A-A截面轴向应变分布

    Figure 14.  Axial strain distribution of A-A section

  • [1] 张伟,高荣,张双喜,等. 0.3 m低温风洞液氮供给系统研制[J]. 航空动力学报,2020,35(5): 1009-1017.

    ZHANG Wei,GAO Rong,ZHANG Shuangxi,et al. Development of liquid nitrogen supplying system of 0.3 m cryogenic wind tunnel[J]. Journal of Aerospace Power,2020,35(5): 1009-1017. (in Chinese)
    [2] 毕龙生. 低温容器应用进展及发展前景(二)[J]. 真空与低温,1999,5(4): 187-192.

    BI Longsheng. Progress and development prospect of cryogenic vessels application[J]. Vacuum and Cryogenics,1999,5(4): 187-192. (in Chinese)
    [3] 谢福寿,厉彦忠,王磊,等. 低温推进剂过冷技术研究[J]. 航空动力学报,2017,32(3): 762-768. doi: 10.13224/j.cnki.jasp.2017.03.031

    XIE Fushou,LI Yanzhong,WANG Lei,et al. Study on subcooled technology for cryogenic propellants[J]. Journal of Aerospace Power,2017,32(3): 762-768. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.03.031
    [4] LIAO Jun. Modeling two-phase transport during cryogenic chilldown in a pipeline[D]. Gainesville, Florida, US: Mechanical Engineering University of Florida, 2005.
    [5] DRESAR N, SIEGWARTH J D. Cryogenic transfer line chilldown[C] // AIP Conference Proceedings. Cleveland Ohio, US: AIP, 2004: 308-315.
    [6] JOHNSON J,SHINE S R. Transient cryogenic chill down process in horizontal and inclined pipes[J]. Cryogenics,2015,71: 7-17. doi: 10.1016/j.cryogenics.2015.05.003
    [7] HU H,CHUNG J N,AMBER S H. An experimental study on flow patterns and heat transfer characteristics during cryogenic chilldown in a vertical pipe[J]. Cryogenics,2012,52(4/5/6): 268-277.
    [8] VELAT C, JACKSON J, KLAUSNER J F, et al. Cryogenic two-phase flow during chilldown[C] // Proceedings of the ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. Charlotte, North Carolina, US: ASME, 2004: 717-722.
    [9] RAME E, HARTWIG J W. Flow visualization of liquid hydrogen line chilldown tests[C]// 52nd Aerospace Sciences Meeting. Cleveland, Ohio, US: AIAA, 2014: 1-11.
    [10] DARR S R,HU H,GLIKIN N,et al. An experimental study on terrestrial cryogenic tube chilldown: Ⅱ effect of flow direction with respect to gravity and new correlation set[J]. International Journal of Heat and Mass Transfer,2016,103: 1243-1260. doi: 10.1016/j.ijheatmasstransfer.2016.08.044
    [11] LIAO J,MEI R,KLAUSNER J F. A film boiling model for cryogenic chilldown at low mass flux inside a horizontal pipeline[J]. Heat and Mass Transfer,2006,42(10): 891-900. doi: 10.1007/s00231-006-0143-5
    [12] LIEBENBERG D H, STOKES R L, EDESKUTY F J. Chilldown and storage losses of large liquid hydrogen storage dewars[R]. Boston, US: Springer US, 1965: 554-560.
    [13] CHEN Jianye,ZENG Ruirui,CHEN Hong,et al. Effects of wall superheat and mass flux on flow film boiling in cryogenic chilldown process[J]. AIP Advances,2020,10(1): 15123.1-15123.9.
    [14] CHEN Jianye,ZENG Ruirui,ZHANG Xiaobin,et al. Numerical modeling of flow film boiling in cryogenic chilldown process using the AIAD framework[J]. International Journal of Heat and Mass Transfer,2018,124: 269-278. doi: 10.1016/j.ijheatmasstransfer.2018.03.087
    [15] 周霞,刘丽,邱利民,等. 低温储罐预冷过程预测[J]. 低温工程,2017(5): 35-41. doi: 10.3969/j.issn.1000-6516.2017.05.007

    ZHOU Xia,LIU Li,QIU Limin,et al. Estimation of pre-cooling process of cryogen tank[J]. Cryogenics,2017(5): 35-41. (in Chinese) doi: 10.3969/j.issn.1000-6516.2017.05.007
    [16] 周霞,刘丽,厉劲风,等. 低温液氧储罐预冷过程数值模拟[J]. 低温工程,2018(3): 35-40. doi: 10.3969/j.issn.1000-6516.2018.03.008

    ZHOU Xia,LIU Li,LI Jinfeng,et al. Numerical study on precooling process of cryogenic liquid oxygen tank[J]. Cryogenics,2018(3): 35-40. (in Chinese) doi: 10.3969/j.issn.1000-6516.2018.03.008
    [17] ZHU Kang,LI Yanzhong,MA Yuan,et al. Experimental study on cool down characteristics and thermal stress of cryogenic tank during LN2 filling process[J]. Applied Thermal Engineering,2018,130: 951-961. doi: 10.1016/j.applthermaleng.2017.11.079
    [18] ZHU Kang,LI Yanzhong,MA Yuan,et al. Influence of filling methods on the cool down performance and induced thermal stress distribution in cryogenic tank[J]. Applied Thermal Engineering,2018,141: 1009-1019. doi: 10.1016/j.applthermaleng.2018.06.030
    [19] 马原,朱康,厉彦忠. 薄壁低温容器加注过程降温及热应力特性研究[J]. 低温工程,2020(3): 31-36. doi: 10.3969/j.issn.1000-6516.2020.03.006

    MA Yuan,ZHU Kang,LI Yanzhong. Study on cool-down and thermal stress characteristics of thin-walled cryogenic containers during filling process[J]. Cryogenics,2020(3): 31-36. (in Chinese) doi: 10.3969/j.issn.1000-6516.2020.03.006
    [20] 江城伟. 低温液化气体储罐温度和热应力瞬态特性研究 [D]. 杭州: 浙江大学, 2018.

    JIANG Chengwei. Research on temperature and thermalstress transient characteristics of cryogenic liquefied gas storage tanks[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
    [21] WANG Lei,SHI Shangguan,WANG Jiaojiao,et al. Experimental study on fast quenching of cryogenic LN2 flow through interior micro-fin tube[J]. International Journal of Heat and Mass Transfer,2022,182: 121978.1-121978.15.
    [22] 贺明. 低温高压氢制备及其储运系统关键技术研究[D]. 北京: 中国科学院大学, 2021.

    HE Ming. Research on key technologies of preparation, storage and transportation system of cryo-compressed hydrogen[D]. Bejing: University of Chinese Academy of Sciences, 2021. (in Chinese)
  • 加载中
图(14)
计量
  • 文章访问数:  114
  • HTML浏览量:  36
  • PDF量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 网络出版日期:  2022-12-05

目录

    /

    返回文章
    返回