留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大推力液氧煤油补燃发动机分级起动仿真分析

张睿文 李斌 王丹 张晓光

张睿文, 李斌, 王丹, 等. 大推力液氧煤油补燃发动机分级起动仿真分析[J]. 航空动力学报, 2024, 39(8):20220555 doi: 10.13224/j.cnki.jasp.20220555
引用本文: 张睿文, 李斌, 王丹, 等. 大推力液氧煤油补燃发动机分级起动仿真分析[J]. 航空动力学报, 2024, 39(8):20220555 doi: 10.13224/j.cnki.jasp.20220555
ZHANG Ruiwen, LI Bin, WANG Dan, et al. Simulation analysis of staged startup of large thrust LOX/kerosene staged combustion rocket engine[J]. Journal of Aerospace Power, 2024, 39(8):20220555 doi: 10.13224/j.cnki.jasp.20220555
Citation: ZHANG Ruiwen, LI Bin, WANG Dan, et al. Simulation analysis of staged startup of large thrust LOX/kerosene staged combustion rocket engine[J]. Journal of Aerospace Power, 2024, 39(8):20220555 doi: 10.13224/j.cnki.jasp.20220555

大推力液氧煤油补燃发动机分级起动仿真分析

doi: 10.13224/j.cnki.jasp.20220555
详细信息
    作者简介:

    张睿文(1983-),男,工程师,博士,研究方向为液体火箭发动机系统设计

  • 中图分类号: V430

Simulation analysis of staged startup of large thrust LOX/kerosene staged combustion rocket engine

  • 摘要:

    分级起动是提高大推力液氧煤油补燃发动机起动品质和发射可靠性的重要措施。通过系统动力学仿真,分析了发动机分级起动特性。采用Modelica语言开发了通用模块化液体动力系统动态特性仿真模型库(Tulips)。基于模型库,自底向上逐层构建和验证了发动机系统仿真模型。仿真结果表明:初级工况设置在推力高于额定值40%时起动品质较好;初级工况越低,进入初级工况的延迟时间越长;初级工况较低时,提前推力室点火和燃料节流阀转级时刻,有利于提高起动品质;涡轮泵转动惯量较大时,进入初级工况更平稳。

     

  • 图 1  典型大推力液氧煤油补燃发动机系统原理图

    Figure 1.  Schematic of the typical large thrust LOX/kerosene staged combustion rocket engine system

    图 2  发动机分级起动过程

    Figure 2.  Staged startup process of the engine

    图 3  MWorks中的模型库结构树

    Figure 3.  Structure tree of the simulation model library in MWorks

    图 4  接口变量

    Figure 4.  Parameters of the interfaces

    图 5  发动机系统仿真模型

    Figure 5.  Simulation model of the engine system

    图 6  仿真模型的试验验证

    Figure 6.  Validation of the simulation models by physical experiments

    图 7  分级起动过程仿真结果

    Figure 7.  Simulation results of the staged startup process

    图 8  不同初级工况的起动特性

    Figure 8.  Startup characteristics of the engine with different prestages

    图 9  不同时序的起动特性

    Figure 9.  Startup characteristics of the engine with different timing sequences

    图 10  转级速率对起动特性的影响

    Figure 10.  Effects of the transfer rate on startup characteristics

    图 11  发生器容积对起动特性的影响

    Figure 11.  Effects of the gas generator volume on the startup characteristics

    图 12  燃气导管容积对起动特性的影响

    Figure 12.  Effects of the gas pipe volume on the startup characteristics

    图 13  系统惯性对起动特性的影响

    Figure 13.  Effects of the inertia on the startup characteristics

    图 14  起动方案优化

    Figure 14.  Improvement of the startup scheme

  • [1] KATORGIN B, CHELKIS F, LIMERICK C. The RD-170, a different approach to launch vehicle propulsion[R]. AIAA 93-2415, 1993
    [2] BULK T A, FEDUN M H. RD-180 ATLAS IIIA stage tests-lessons learned[R]. AIAA 2000-3774, 2000.
    [3] RACHUK V, GONCHAROV N, MARTYNENKO Y, et al. Design, development, and history of the oxygen/hydrogen engine RD-0120[R]. AIAA 95-2540, 1995.
    [4] HULKA J, FORDE J, WERLING R, et al. Modification and verification testing of a Russian NK-33 rocket engine for reusable and restartable applications[R]. AIAA 98-3361, 1998.
    [5] 张晓光,高玉闪,马冬英,等. 大推力液氧煤油补燃发动机分级起动技术[J]. 导弹与航天运载技术,2020(4): 68-72.

    ZHANG Xiaoguang,GAO Yushan,MA Dongying,et al. Staged startup technology of high thrust staged combustion LOX/kerosene rocket engine[J]. Missiles and Space Vehicles,2020(4): 68-72. (in Chinese)
    [6] 李元启,刘红军,徐浩海,等. 液体火箭发动机动态特性仿真技术研究进展[J]. 火箭推进,2017,43(5): 1-6.

    LI Yuanqi,LIU Hongjun,XU Haohai,et al. Research progress on numerical simulation technology of liquid rocket engine dynamic characteristics[J]. Journal of Rocket Propulsion,2017,43(5): 1-6. (in Chinese)
    [7] BINDER M P, TOMSIK T, VERES J. RL10A-3-3A rocket engine modeling project[R]. NASA-TM-107318, 1997
    [8] DURTESTE S. A transient model of the VINCI cryogenic upper stage rocket engine[R]. AIAA 2007-5531, 2007.
    [9] KUROSU A, YAMANISHI N, TANI N, et al. Study of next booster engine LE-X in JAXA[R]. AIAA 2006-4700, 2006.
    [10] DI MATTEO F, DE ROSA M, ONOFRI M. Start-up transient simulation of a liquid rocket engine[R]. AIAA 2011-6032, 2011.
    [11] YAMANISHI N, KIMURA T, TAKAHASHI M, et al. Transient analysis of the LE-7A rocket engine using the rocket engine dynamic simulator (REDS) [R]. AIAA 2004 3850, 2004.
    [12] 黄敏超,王新建,王楠. 补燃循环液体火箭发动机启动过程的模块化仿真[J]. 推进技术,2001,22(2): 101-103.

    HUANG Minchao,WANG Xinjian,WANG Nan. Modular simulation on the start process for staged combustion cycle liquid propellant rocket engine[J]. Journal of Propulsion Technology,2001,22(2): 101-103. (in Chinese)
    [13] 刘昆,张育林,程谋森. 液体火箭发动机系统瞬变过程模块化建模与仿真[J]. 推进技术,2003,24(5): 401-405.

    LIU Kun,ZHANG Yulin,CHENG Mousen. Modularization modeling and simulation for the transients of liquid propellant rocket engines[J]. Journal of Propulsion Technology,2003,24(5): 401-405. (in Chinese)
    [14] 张黎辉,李伟,段娜. 液体火箭发动机模块化通用仿真[J]. 航空动力学报,2011,26(3): 687-691.

    ZHANG Lihui,LI Wei,DUAN Na. General simulation on modularization of liquid rocket engine[J]. Journal of Aerospace Power,2011,26(3): 687-691. (in Chinese)
    [15] 陈宏玉,刘红军,陈建华. 补燃循环发动机强迫起动过程[J]. 航空动力学报,2015,30(12): 3010-3016.

    CHEN Hongyu,LIU Hongjun,CHEN Jianhua. Forced start-up procedure of a staged combustion cycle engine[J]. Journal of Aero-space Power,2015,30(12): 3010-3016. (in Chinese)
    [16] BRADLEY M, BRADLEY M. Start with off-nominal propellant inlet pressures[R]. AIAA 1997-2687, 1997.
    [17] 管杰,刘上,刘志让. 补燃发动机完全自身起动过程富氧燃气温度控制[J]. 火箭推进,2020,46(3): 33-40.

    GUAN Jie,LIU Shang,LIU Zhirang. Temperature control of oxygen-riched gas during complete self start-up process for staged combustion cycle engine[J]. Journal of Rocket Propulsion,2020,46(3): 33-40. (in Chinese)
    [18] 李程,杨永强,徐浩海,等. 500 t级液氧煤油补燃发动机起动过程仿真研究[J]. 火箭推进,2014,40(6): 1-7.

    LI Cheng,YANG Yongqiang,XU Haohai,et al. Numerical simulation of start-up process for 500 t thrust LOX/kerosene staged combustion cycle rocket engine[J]. Journal of Rocket Propulsion,2014,40(6): 1-7. (in Chinese)
    [19] 李程,刘站国,徐浩海. 双推力室起动同步性研究[J]. 火箭推进,2014,40(4): 16-21,56.

    LI Cheng,LIU Zhanguo,XU Haohai. Study on synchronous ignition of dual-thrust chamber engine[J]. Journal of Rocket Propulsion,2014,40(4): 16-21,56. (in Chinese)
    [20] KOPTILYY D, MARCHAN R, DOLGOPOLOV S, et al. Mathematical modeling of transient processes during startup of main liquid propellant engine under hot test conditions[C]//Proceedings of the 8th European Conference for Aeronautics and Space Sciences. Brussels: European Research Council, 2019: 1-15.
    [21] 郑大勇,王弘亚,胡骏. 大推力氢氧发动机瞬态特性研究[J]. 推进技术,2021,42(8): 1761-1769.

    ZHENG Dayong,WANG Hongya,HU Jun. Transient characteristics of high-thrust oxygen/hydrogen rocket engine[J]. Journal of Propulsion Technology,2021,42(8): 1761-1769. (in Chinese)
    [22] 汪洪波, 吴海燕, 谭建国. 推进系统动力学[M]. 北京: 科学出版社, 2018.
    [23] 张淼,徐浩海,李斌,等. 流量调节器管路系统自激振荡特性研究[J]. 推进技术,2021,42(7): 1493-1500. doi: 10.13675/j.cnki.tjjs.200395

    ZHANG Miao,XU Haohai,LI Bin,et al. Auto oscillation of flow regulator pipe system[J]. Journal of Propulsion Technology,2021,42(7): 1493-1500. (in Chinese) doi: 10.13675/j.cnki.tjjs.200395
  • 加载中
图(14)
计量
  • 文章访问数:  55
  • HTML浏览量:  44
  • PDF量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-31
  • 网络出版日期:  2023-10-19

目录

    /

    返回文章
    返回