留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短舱泄压门几何参数对流动特性的影响

季佳圆 邓阳 刘天依 何鹏 马率 肖中云

季佳圆, 邓阳, 刘天依, 等. 短舱泄压门几何参数对流动特性的影响[J]. 航空动力学报, 2024, 39(8):20220556 doi: 10.13224/j.cnki.jasp.20220556
引用本文: 季佳圆, 邓阳, 刘天依, 等. 短舱泄压门几何参数对流动特性的影响[J]. 航空动力学报, 2024, 39(8):20220556 doi: 10.13224/j.cnki.jasp.20220556
JI Jiayuan, DENG Yang, LIU Tianyi, et al. Influence of geometric parameters of nacelle pressure relief door on flow characteristics[J]. Journal of Aerospace Power, 2024, 39(8):20220556 doi: 10.13224/j.cnki.jasp.20220556
Citation: JI Jiayuan, DENG Yang, LIU Tianyi, et al. Influence of geometric parameters of nacelle pressure relief door on flow characteristics[J]. Journal of Aerospace Power, 2024, 39(8):20220556 doi: 10.13224/j.cnki.jasp.20220556

短舱泄压门几何参数对流动特性的影响

doi: 10.13224/j.cnki.jasp.20220556
详细信息
    作者简介:

    季佳圆(1993-),女,工程师,硕士,主要从事短舱通风冷却、泄压等研究

  • 中图分类号: V244+.2

Influence of geometric parameters of nacelle pressure relief door on flow characteristics

  • 摘要:

    运用CFD仿真计算了不同倒圆角、铰链、长宽比的泄压门排放系数,并从流动层面深入剖析了以上几何参数对流动特性的影响机理,其结果可供短舱泄压工程设计参考。研究显示,倒圆角仅略增大排放系数。此外,不同铰链泄压门的排放特性不同,鹅颈式优于枢轴式和合页式,原因是铰链安装形式导致外侧迎流面的流动及出流通道变化。鹅颈式出流通道最大,部分气流从安装缝隙流出,故出流能力最强;合页式外部来流冲击门板后向两侧绕流而阻挡出流,故排放能力最弱;枢轴式外侧来流对出流引射作用较合页式强,但因出流通道较鹅颈式小,故出流能力小于鹅颈式。长宽比大时排放系数大,原因是长宽比大时外侧来流向门板两侧绕流减弱,出流处易形成卷吸涡而增强出流。

     

  • 图 1  短舱泄压门示意图[6]

    Figure 1.  Nacelle pressure relief door[6]

    图 2  舱内泄压流动示意图

    Figure 2.  Figure of pressure relief flow in compartment

    图 3  不同倒圆角形式泄压门示意图

    Figure 3.  Figure of pressure relief doors with different fillets

    图 4  不同铰链形式泄压门示意图

    Figure 4.  Figure of pressure relief doors with different hing lines

    图 5  不同长宽比泄压门示意图

    Figure 5.  Figure of pressure relief doors with different aspect ratios

    图 6  泄压流动特性研究计算模型示意图

    Figure 6.  Figure of pressure relief flow calculation model

    图 7  泄压流动特性研究半模网格划分示意图

    Figure 7.  Figure of pressure relief flow half mesh model

    图 8  倒圆角影响下的马赫数云图

    Figure 8.  Figure of Mach number distribution with/without fillet

    图 9  倒圆角影响下的泄压门压力系数分布云图

    Figure 9.  Figure of pressure coefficient distribution with/without fillet

    图 10  铰链形式影响下马赫数分布云图

    Figure 10.  Figure of Mach number distribution of different hinge lines

    图 11  铰链形式影响下的泄压门压力系数分布云图

    Figure 11.  Figure of pressure coefficient distribution of pressure relief door with different hinge lines

    图 12  铰链影响下的泄压门流线示意图

    Figure 12.  Figure of flow chart of pressure relief door with different hinge lines

    图 13  长宽比影响下马赫数分布云图

    Figure 13.  Figure of Mach number distribution with different aspect ratio

    图 14  长宽比的影响的泄压门压力系数分布云图

    Figure 14.  Figure of pressure coefficient distribution of pressure relief door with different aspect ratios

    图 15  长宽比的影响的气流流线图

    Figure 15.  Figure of different aspect ratio flow chart

    表  1  不同铰链形式泄压门的排放系数(θ =38.6°)

    Table  1.   Discharge coefficient of pressure relief door with different hinge lines (θ =38.6°)

    铰链形式 排放系数
    鹅颈式 0.6817
    合页式 0.4487
    枢轴式 0.5002
    下载: 导出CSV

    表  2  不同长宽比的泄压门的排放系数(θ =30°)

    Table  2.   Discharge coefficient of pressure relief door with different length ratios (θ =30°)

    长宽比 排放系数
    0.5 0.588
    1.0 0.682
    1.5 0.826
    下载: 导出CSV
  • [1] BENARD E,WATTERSON J K,GAULT R,et al. Review and experimental survey of flapped exhaust performance[J]. Journal of Aircraft,2008,45(1): 349-352. doi: 10.2514/1.34238
    [2] 王晨臣,潘俊,王洋洋. 飞机发动机短舱泄压过程研究[J]. 航空科学技术,2021,32(4): 29-34.

    WANG Chenchen,PAN Jun,WANG Yangyang. Research on pressure relief process in aircraft engine nacelle[J]. Aeronautical Science & Technology,2021,32(4): 29-34. (in Chinese)
    [3] 杨眉,许璠璠,宁宝军,等. 航空发动机燃烧室机匣破裂安全性预测方法[J]. 航空科学技术,2018,29(5): 18-24.

    YANG Mei,XU Fanfan,NING Baojun,et al. Predicting method of burst security of aero-engine combustor case[J]. Aeronautical Science & Technology,2018,29(5): 18-24. (in Chinese)
    [4] 郭政波,刘振刚,杨雄. 航空发动机进口测头装机的强度及气动分析[J]. 航空科学技术,2018,29(11): 32-37.

    GUO Zhengbo,LIU Zhengang,YANG Xiong. Strength and aerodynamics analysis of aero-engine inlet probe installation[J]. Aeronautical Science & Technology,2018,29(11): 32-37. (in Chinese)
    [5] 中国民用航空总局. 中国民用航空规章第25部运输类飞机适航标准: CAR-25-R4[S].北京: 中国民用航空总局, 2011: 118.
    [6] PRATT P R, WATTERSON J K, BENARD E, et al. Performance of a flapped duct exhausting into a compressible external flow[R]. Yokohama, Japan: 24th International Congress of The Aeronautical Sciences, 2004.
    [7] SCHOTT T. Computational analysis of aircraft pressure relief doors[D]. Fort Collins, US: Colorado State University, 2016.
    [8] VICK A R. An investigation of discharge and thrust characteristics of flapped outlets for stream Mach numbers from 0.4 to 1.30[R]. NACA TN4007, 1957.
    [9] DEWEY P E. A preliminary investigation of aerodynamic characteristics of small inclined air outlets at transonic Mach numbers[R]. NACA TN3442, 1953.
    [10] VICK A, DEWEY P E. An investigation of the discharge and drag characteristics of auxiliary-air outlets discharging into a transonic stream[R]. NACA TN3466, 1955.
    [11] YOUNG A D, PATTERSON J H, JONES J L. Aircraft excrescence drag[R]. AGARD TR AG-264, 1981.
    [12] VEDESHKIN G, DUBOVITSKIY A, BONDARENKO D, et al. Experimental investigations of hydraulic performance in aviation engine compartment[R]. Brisbane, Astralia: 28th International Con-gress of the Aeronautical Sciences, 2012.
    [13] VERSEUX O, SOMMERER Y. New challenges for engine nacelle compartments pressure and thermal loads management with aircraft engine evolution[R]. Beijing: 29th Congress of the International Council of the Aeronautical Sciences, 2014.
    [14] 王晨臣,冯诗愚,彭孝天,等. 发动机短舱泄压过程瞬态仿真[J]. 北京航空航天大学学报,2019,45(11): 2284-2290.

    WANG Chenchen,FENG Shiyu,PENG Xiaotian,et al. Transient simulation on pressure relief process of engine nacelle[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(11): 2284-2290. (in Chinese)
    [15] 王晨臣,冯诗愚,彭孝天,等. 开启方式对短舱泄压门性能特性影响[J]. 航空动力学报,2019,34(5): 1069-1075.

    WANG Chenchen,FENG Shiyu,PENG Xiaotian,et al. Influence of opening mode on performance characteristics of nacelle pressure relief door[J]. Journal of Aerospace Power,2019,34(5): 1069-1075. (in Chinese)
    [16] FENG Shiyu,WANG Chenchen,PENG Xiaotian,et al. Influence of the pressure relief door area and aspect ratio on discharge and force characteristics[J]. Aircraft Engineering and Aerospace Technology,2019,92(2): 107-116.
    [17] 牟斌. 流动控制数值模拟研究[D]. 四川 绵阳: 中国空气动力研究与发展中心, 2006.

    MOU Bin. Study on numerical simulation of flow control[D]. Mianyang Sichuan: China Aerodynamics Research and Development Center, 2006. (in Chinese)
    [18] 肖中云. 旋翼流场数值模拟方法研究[D]. 四川 绵阳: 中国空气动力研究与发展中心, 2007.

    XIAO Zhongyun. Investigation of computational modeling techniques for rotor flowfields[D]. Mianyang Sichuan: China Aerodynamics Research and Development Center, 2007. (in Chinese)
    [19] 肖中云,江雄,牟斌,等. 并行环境下外挂物动态分离过程的数值模拟[J]. 航空学报,2010,31(8): 1509-1516.

    XIAO Zhongyun,JIANG Xiong,MOU Bin,et al. Numerical simulation of dynamic process of store separation in parallel environment[J]. Acta Aeronautica et Astronautica Sinica,2010,31(8): 1509-1516. (in Chinese)
    [20] 王建涛,易贤,肖中云,等. ARJ21-700飞机冰脱落数值模拟[J]. 空气动力学学报,2013,31(4): 430-436.

    WANG Jiantao,YI Xian,XIAO Zhongyun,et al. Numerical simulation of ice shedding from ARJ21-700[J]. Acta Aerodynamica Sinica,2013,31(4): 430-436. (in Chinese)
    [21] 余永刚,周铸,黄江涛,等. 单通道客机气动标模CHN-T1设计[J]. 空气动力学学报,2018,36(3): 505-513.

    YU Yonggang,ZHOU Zhu,HUANG Jiangtao,et al. Aerodynamic design of a standard model CHN-T1for single-aisle passenger aircraft[J]. Acta Aerodynamica Sinica,2018,36(3): 505-513. (in Chinese)
    [22] 马率,邱名,王建涛,等. CFD在螺旋桨飞机滑流影响研究中的应用[J]. 航空学报,2019,40(4): 622365.

    MA Shuai,QIU Ming,WANG Jiantao,et al. Application of CFD in slipstream effect on propeller aircraft research[J]. Acta Aeronautica et Astronautica Sinica,2019,40(4): 622365. (in Chinese)
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  39
  • HTML浏览量:  21
  • PDF量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-31
  • 网络出版日期:  2023-10-17

目录

    /

    返回文章
    返回