留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷嘴结构细节对连续爆轰发动机掺混特性的影响

孔维鹏 刘倩

孔维鹏, 刘倩. 喷嘴结构细节对连续爆轰发动机掺混特性的影响[J]. 航空动力学报, 2024, 39(8):20220558 doi: 10.13224/j.cnki.jasp.20220558
引用本文: 孔维鹏, 刘倩. 喷嘴结构细节对连续爆轰发动机掺混特性的影响[J]. 航空动力学报, 2024, 39(8):20220558 doi: 10.13224/j.cnki.jasp.20220558
KONG Weipeng, LIU Qian. Influence of injector structure details on mixing characteristics of continuous detonation engine[J]. Journal of Aerospace Power, 2024, 39(8):20220558 doi: 10.13224/j.cnki.jasp.20220558
Citation: KONG Weipeng, LIU Qian. Influence of injector structure details on mixing characteristics of continuous detonation engine[J]. Journal of Aerospace Power, 2024, 39(8):20220558 doi: 10.13224/j.cnki.jasp.20220558

喷嘴结构细节对连续爆轰发动机掺混特性的影响

doi: 10.13224/j.cnki.jasp.20220558
详细信息
    作者简介:

    孔维鹏(1992-),男,博士生,主要从事液体火箭发动机燃烧装置研究

  • 中图分类号: V430

Influence of injector structure details on mixing characteristics of continuous detonation engine

  • 摘要:

    为研究不同喷嘴结构细节对气氢/气氧连续爆轰发动机冷态掺混特性的影响,采用商业软件Fluent对其冷态掺混流场进行了数值仿真研究。以环缝-喷孔式喷注结构为基础,设计了12种不同喷嘴结构的连续爆轰发动机,研究了在入口条件相同的情况下,不同气氧喷嘴出口扩张角、不同气氢喷注角度、不同气氢喷嘴出口扩张角以及单双侧喷注对掺混特性的影响。结果表明:气氧喷嘴出口扩张角在0°~20°范围内,掺混效果呈现先下降后上升的趋势,气氧喷嘴出口扩张角最佳值为20°;气氢喷注角度在30°~90°范围内,掺混效果呈现先上升后下降的趋势,气氢喷注角度最佳值为45°;在0°~10°范围内,增大气氢喷嘴出口扩张角使得掺混效果下降;气氢双侧喷注的掺混效果明显优于单侧喷注。

     

  • 图 1  连续爆轰发动机模型示意图

    Figure 1.  Schematic diagram of continuous detonation engine

    图 2  气氢喷孔中心截面示意图

    Figure 2.  Schematic diagram of central section of GH2 injector

    图 3  网格无关性验证结果

    Figure 3.  Grid independence verification results

    图 4  局部网格示意图

    Figure 4.  Local grid schematic diagram

    图 5  不同气氧喷嘴出口扩张角的中心截面上马赫数云图与流线图

    Figure 5.  Mach number and streamline diagram on the central cross section of different GO2 injector outlet expansion angles

    图 6  不同气氧喷嘴出口扩张角的中心截面上H2质量分数分布云图

    Figure 6.  Mass fraction of H2 on the central cross section of different GO2 injector outlet expansion angles

    图 7  不同气氧喷嘴出口扩张角的H2质量分数离散系数(β=45°,γ=0°)

    Figure 7.  H2 mass fraction dispersion coefficients of different GO2 injector outlet expansion angles (β=45°,γ=0°)

    图 8  不同气氢喷注角度的中心截面上马赫数云图与流线图

    Figure 8.  Mach number and streamline diagram on the central cross section of different GH2 injection angles

    图 9  不同气氢喷注角度的中心截面上H2质量分数分布云图

    Figure 9.  Mass fraction of H2 on the central cross section of different GH2 injection angles

    图 10  不同气氢喷注角度的H2质量分数离散系数(α=45°,γ=0°)

    Figure 10.  H2 mass fraction dispersion coefficients at different GH2 injection angles (α=45°,γ=0°)

    图 11  不同气氢喷嘴出口扩张角的中心截面上马赫数云图与流线图

    Figure 11.  Mach number and streamline diagram on the central cross section of different GH2 injector outlet expansion angles

    图 12  不同气氢喷嘴出口扩张角的中心截面上H2质量分数分布云图

    Figure 12.  Mass fraction of H2 on the central cross section of different GH2 injector outlet expansion angles

    图 13  不同气氢喷嘴出口扩张角的H2质量分数离散系数 (α=20°,β=45°)

    Figure 13.  H2 mass fraction dispersion coefficients at different GH2 injector outlet expansion angles (α=20°,β=45°)

    图 14  气氢单侧喷注与双侧喷注的中心截面上马赫数云图与流线图(α=20°,β=45°,γ=0°)

    Figure 14.  Mach number and streamline diagram on central cross section of unilateral and bilateral GH2 injection (α=20°,β=45°,γ=0°)

    图 15  气氢单侧喷注与双侧喷注时的H2质量分数离散系数(α=20°,β=45°,γ=0°)

    Figure 15.  H2 mass fraction dispersion coefficients between unilateral and bilateral GH2 injection (α=20°,β=45°,γ=0°)

    表  1  不同发动机喷注器结构尺寸

    Table  1.   Structure dimension of different engine injectors

    编号α/(°)β/(°)γ/(°)喷注方式
    10450双侧
    25450双侧
    310450双侧
    415450双侧
    520450双侧
    620300双侧
    720600双侧
    820900双侧
    920455双侧
    10204510双侧
    1120450外侧
    1220450内侧
    下载: 导出CSV
  • [1] 王健平, 姚松柏. 连续爆轰发动机原理与技术[M]. 北京: 科学出版社, 2018.
    [2] 谢峤峰,王兵,董琨. 基于连续旋转爆震的推进技术研究进展[J]. 气体物理,2020,5(1): 1-23.

    XIE Qiaofeng,WANG Bing,DONG Kun. Progress in research of rotating detonation propulsion[J]. Physics of Gases,2020,5(1): 1-23. (in Chinese)
    [3] 王兵,谢峤峰,闻浩诚,等. 爆震发动机研究进展[J]. 推进技术,2021,42(4): 721-737, 716.

    WANG Bing,XIE Qiaofeng,WEN Haocheng,et al. Research progress of detonation engines[J]. Journal of Propulsion Technology,2021,42(4): 721-737, 716. (in Chinese)
    [4] FROLOV S M,AKSENOV V S,DUBROVSKII A V,et al. Energy efficiency of a continuous-detonation combustion chamber[J]. Combustion, Explosion, and Shock Waves,2015,51(2): 232-245. doi: 10.1134/S0010508215020070
    [5] SCHWER D, KAILASANATH K. Numerical study of the effects of engine size on rotating detonation engines[R]. AIAA 2011-581, 2011
    [6] YI T H,LOU Jing,TURANGAN C,et al. Propulsive performance of a continuously rotating detonation engine[J]. Journal of Propulsion and Power,2011,27(1): 171-181. doi: 10.2514/1.46686
    [7] 刘世杰,林志勇,孙明波,等. 旋转爆震波发动机二维数值模拟[J]. 推进技术,2010,31(5): 634-640.

    LIU Shijie,LIN Zhiyong,SUN Mingbo,et al. Two-dimensional numerical simulation of rotating detonation wave engine[J]. Journal of Propulsion Technology,2010,31(5): 634-640. (in Chinese)
    [8] 武丹,刘岩,王健平. 连续旋转爆轰发动机参数特性的三维数值模拟[J]. 航空动力学报,2015,30(7): 1576-1582.

    WU Dan,LIU Yan,WANG Jianping. Three-dimensional numerical simulation of the parametric properties of continuously rotating detonation engine[J]. Journal of Aerospace Power,2015,30(7): 1576-1582. (in Chinese)
    [9] YAO S,HAN X,LIU Y,et al. Numerical study of rotating detonation engine with an array of injection holes[J]. Shock Waves,2017,27(3): 467-476. doi: 10.1007/s00193-016-0692-6
    [10] 刘倩,郑洪涛,李智明,等. 连续旋转爆轰燃烧室的性能[J]. 航空动力学报,2015,30(6): 1328-1336.

    LIU Qian,ZHENG Hongtao,LI Zhiming,et al. Performance of continuously rotating detonation combustor[J]. Journal of Aerospace Power,2015,30(6): 1328-1336. (in Chinese)
    [11] TANG Xinmeng,WANG Jianping,SHAO Yetao. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame,2015,162(4): 997-1008. doi: 10.1016/j.combustflame.2014.09.023
    [12] 孙健,周进,林志勇,等. 燃烧室轴向长度对旋转爆震发动机性能的影响[J]. 航空动力学报,2016,31(9): 2080-2086.

    SUN Jian,ZHOU Jin,LIN Zhiyong,et al. Influence of chamber length on rotating detonation engine performance[J]. Journal of Aerospace Power,2016,31(9): 2080-2086. (in Chinese)
    [13] 祁磊,赵宁波,郑洪涛,等. 当量比对连续旋转爆轰燃烧室特性的影响[J]. 航空动力学报,2018,33(11): 2703-2713.

    QI Lei,ZHAO Ningbo,ZHENG Hongtao,et al. Influence of equivalence ratio on characteristics of continuously rotating detonation combustor[J]. Journal of Aerospace Power,2018,33(11): 2703-2713. (in Chinese)
    [14] MENG Qingyang,ZHAO Ningbo,ZHENG Hongtao,et al. A numerical study of rotating detonation wave with different numbers of fuel holes[J]. Aerospace Science and Technology,2019,93: 105301. doi: 10.1016/j.ast.2019.105301
    [15] ZHENG Hongtao,MENG Qingyang,ZHAO Ningbo,et al. Numerical investigation on H2/Air non-premixed rotating detonation engine under different equivalence ratios[J]. International Journal of Hydrogen Energy,2020,45: 2289-2307. doi: 10.1016/j.ijhydene.2019.11.014
    [16] ZHAO Majie,ZHANG Huangwei. Large eddy simulation of non-reacting flow and mixing fields in a rotating detonation engine[J]. Fuel,2020,280: 118534. doi: 10.1016/j.fuel.2020.118534
    [17] 周蕊,李晓鹏. 连续旋转爆轰发动机冷流场的混合特性研究[J]. 航空学报,2016,37(12): 3668-3674.

    ZHOU Rui,LI Xiaopeng. Numerical investigation of mixing characteristic of cold continuously rotating detonation engine[J]. Acta Aeronautica et Astronautica Sinica,2016,37(12): 3668-3674. (in Chinese)
    [18] 戴勇强. 氢气/空气非预混喷注及旋转爆轰燃烧数值模拟研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.

    DAI Yongqiang. Numerical study of hydrogen/air injection and rotating detonation combustion under non-premixed condition[D]. Harbin: Harbin Engineering University, 2021. (in Chinese)
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  53
  • HTML浏览量:  66
  • PDF量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-31
  • 网络出版日期:  2023-08-16

目录

    /

    返回文章
    返回